研究生: |
陳以恩 Chen, Yi En |
---|---|
論文名稱: |
重組鱟血漿凝集素之細菌及配體結合位與抑菌功能鑑定 In silico identification and in vitro characterization of bacteria/ligand binding residues governing antibacterial function of recombinant horseshoe crab plasma lectin |
指導教授: |
張大慈
Chang, Margaret Dah Tsyr |
口試委員: |
賴惠敏
Lai, Hui Min 吳東昆 Wu, Tung Kung 藍忠昱 Lan, Chung Yu 蘇士哲 Sue, Shih Che Sue |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 134 |
中文關鍵詞: | 重組鱟血漿凝集素 |
外文關鍵詞: | Recombinant Horseshoe Crab Plasma Lectin |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
抗生素已廣泛應用在各種感染疾病的治療及預防,然而基於天擇,致病細菌為求存活逐步演為化具有抗藥性的突變株,使其在有抗生素存在的環境中持續大量繁殖。抗微生物胜肽廣泛存在於自然界中,為抵抗外來病原菌的先天免疫分子,其應用及研究有助於發展非抗生素類的抗病原體用藥。針對目前對抗生素產生抗藥性的細菌發展新型醫療用藥,已解決今日抗生素濫用而導致的病症及隱憂。由台灣品種鱟(Taiwanese Tachypleus tridentatus)血漿中分離之血漿凝集素具有辨識革蘭氏陽性、陰性菌以及其他病源菌表面分子型態(Pathogen-associated molecular pattern,PAMP)的能力。本實驗室成功使用大腸桿菌系統表現與純化重組鱟血漿凝集素(recombinant horseshoe crab plasma lectin,rHPL),除了具有細菌之脂多醣內毒素辨識活性外,亦可專一結合細菌表面特殊的鼠李糖 (rhamnose)。由於rHPL的結構資訊尚未明瞭,本研究首先以Phyre2網站預測其結構,再以‘附加特徵排比’方法推測五個可能參與配體結合的親水性芳香環胺基酸(酪胺酸88、色胺酸91、苯丙胺酸143、苯丙胺酸145、色胺酸147)。再將此預測的五個胺基酸單點突變為丙胺酸,進一步以酵素免疫分析法測試突變株與配體的結合能力。本研究結果顯示當酪胺酸88或苯丙胺酸145突變時,突變株與細菌及配體的結合能力大幅下降約百分之八十,證實酪胺酸88與苯丙胺酸145為重要的配體結合位。此外,本研究證實rHPL具有抑制綠膿桿菌以及李斯特菌生長的能力,並發現rHPL突變株失去抑菌能力,進一步證實rHPL需透過結合病源菌表面的醣類以達到抑菌效果。本論文利用生物資訊之預測探討rHPL結構、功能與機制之間的關聯性,有助於發展新穎致病菌檢測及抗菌劑等生醫應用。
Rapid emergence of antibiotic-resistant strains of pathogens, together with sluggish discovery of new antibacterial agents has led to the need to find alternative treatments. Antimicrobial peptides (AMPs), or host defense proteina, are essential components of innate immune systems. The AMP field is growing rapidly in response to the demand for novel antimicrobial agents against drug-resistant pathogens. Recombinant horseshoe crab plasma lectin (rHPL) derived from hemolymph of Taiwanese Tachypleus tridentatus has been successfully expressed and purified in Escherichia coli system in our laboratory, and it recognizes a specific monosaccharide on lipopolysaccharide, rhamnose, on bacterial surface. Since neither secondary nor tertiary structure of rHPL has ever been solved yet, Phyre2 database was applied to predict in silico rHPL structure, and the resullt showed that rHPL might contain two putative functional domains, nHPLNTD and nHPLCTD. As aromatic residues surrounded by polar residues within two amino acids in neighboring sequences, namely “hydrophilic aromatic residues” (HARs), are reported to involve in glycan ligand binding, sequence analysis revealed that 5 HARs (Y88, W91, F143, F145, and W147) in rHPL might possibly served as ligand binding sites. Interestingly, mutants of Y88A located in nHPLNTD and F145A located in nHPLCTD lost approximately 80% pathogen and LPS binding activities, strongly suggesting that these 2 HARs were crucial for in vitro bacteria and LPS binding. In addition, wildtype rHPL was shown to inhibit growth of Pseudomonas aeruginosa PAO1 and Listeria monocytogenes in a concentration-dependent manner. Whereas, rHPL(Y88A) and rHPL(F145A) with minor differences in secondary structures lost growth inhibitory activity to the bacteria, indicating that rHPL inhibited bacterial growth through molecular interaction with key ligand binding residues Tyr88 and Phe145. Structure-function correlation between rHPL and glycan ligand may further facilitate development of novel diagnostic and therapeutic strategies for microbial pathogens.
1. J. Davies and D. Davies, Origins and evolution of antibiotic resistance. (2010) Microbiol Mol Biol Rev. 74, 417-433.
2. J.P. Choi, E.H. Cho, S.J. Lee, S.T. Lee, M.S. Koo, and Y.G. Song, Influx of multidrug resistant, Gram-negative bacteria (MDRGNB) in a public hospital among elderly patients from long-term care facilities: a single-center pilot study. (2012) Arch Gerontol Geriatr. 54, e19-22.
3. D.M. Sievert, P. Ricks, J.R. Edwards, A. Schneider, J. Patel, A. Srinivasan, A. Kallen, B. Limbago, S. Fridkin, T. National Healthcare Safety Network, and N.F. Participating, Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. (2013) Infect Control Hosp Epidemiol. 34, 1-14.
4. M.R. Mulvey and A.E. Simor, Antimicrobial resistance in hospitals: how concerned should we be? (2009) CMAJ. 180, 408-415.
5. R. Medzhitov and C.A. Janeway, Jr., Innate immunity: the virtues of a nonclonal system of recognition. (1997) Cell. 91, 295-298.
6. K. Hoebe, E. Janssen, and B. Beutler, The interface between innate and adaptive immunity. (2004) Nat Immunol. 5, 971-974.
7. V.N. Tra and D.H. Dube, Glycans in pathogenic bacteria--potential for targeted covalent therapeutics and imaging agents. (2014) Chem Commun (Camb). 50, 4659-4673.
8. W. Vollmer, D. Blanot, and M.A. de Pedro, Peptidoglycan structure and architecture. (2008) FEMS Microbiol Rev. 32, 149-167.
9. C.R. Raetz and C. Whitfield, Lipopolysaccharide endotoxins. (2002) Annu Rev Biochem. 71, 635-700.
10. C. Alexander and E.T. Rietschel, Bacterial lipopolysaccharides and innate immunity. (2001) J Endotoxin Res. 7, 167-202.
11. C. Weidenmaier and A. Peschel, Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. (2008) Nat Rev Microbiol. 6, 276-287.
12. S. Brown, J.P. Santa Maria, Jr., and S. Walker, Wall teichoic acids of gram-positive bacteria. (2013) Annu Rev Microbiol. 67, 313-336.
13. M.G. Percy and A. Grundling, Lipoteichoic acid synthesis and function in gram-positive bacteria. (2014) Annu Rev Microbiol. 68, 81-100.
14. J.G. Swoboda, J. Campbell, T.C. Meredith, and S. Walker, Wall teichoic acid function, biosynthesis, and inhibition. (2010) Chembiochem. 11, 35-45.
15. J.S. Schorey and L. Sweet, The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. (2008) Glycobiology. 18, 832-841.
16. L. Pang, X. Tian, W. Pan, and J. Xie, Structure and function of mycobacterium glycopeptidolipids from comparative genomics perspective. (2013) J Cell Biochem. 114, 1705-1713.
17. M. Obst, S. Faurby, S. Bussarawit, and P. Funch, Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. (2012) Mol Phylogenet Evol. 62, 21-26.
18. S. Iwanaga and B.L. Lee, Recent advances in the innate immunity of invertebrate animals. (2005) J Biochem Mol Biol. 38, 128-150.
19. S. Kawabata and S. Iwanaga, Role of lectins in the innate immunity of horseshoe crab. (1999) Dev Comp Immunol. 23, 391-400.
20. S. Iwanaga, S. Kawabata, and T. Muta, New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. (1998) J Biochem. 123, 1-15.
21. S. Iwanaga, T. Muta, T. Shigenaga, Y. Miura, N. Seki, T. Saito, and S. Kawabata, Role of hemocyte-derived granular components in invertebrate defense. (1994) Ann N Y Acad Sci. 712, 102-116.
22. S. Iwanaga and S. Kawabata, Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. (1998) Front Biosci. 3, D973-984.
23. S. Iwanaga, Primitive coagulation systems and their message to modern biology. (1993) Thromb Haemost. 70, 48-55.
24. S. Iwanaga, The limulus clotting reaction. (1993) Curr Opin Immunol. 5, 74-82.
25. S. Kawabata and T. Muta, Sadaaki Iwanaga: Discovery of the lipopolysaccharide- and beta-1,3-D-glucan-mediated proteolytic cascade and unique proteins in invertebrate immunity. (2010) J Biochem. 147, 611-618.
26. S. Iwanaga, The molecular basis of innate immunity in the horseshoe crab. (2002) Curr Opin Immunol. 14, 87-95.
27. N. Kairies, H.G. Beisel, P. Fuentes-Prior, R. Tsuda, T. Muta, S. Iwanaga, W. Bode, R. Huber, and S. Kawabata, The 2.0-A crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. (2001) Proc Natl Acad Sci U S A. 98, 13519-13524.
28. H.G. Beisel, S. Kawabata, S. Iwanaga, R. Huber, and W. Bode, Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. (1999) EMBO J. 18, 2313-2322.
29. T.H. Kuo, S.C. Chuang, S.Y. Chang, and P.H. Liang, Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping. (2006) Biochem J. 393, 757-766.
30. T. Saito, S. Kawabata, M. Hirata, and S. Iwanaga, A novel type of limulus lectin-L6. Purification, primary structure, and antibacterial activity. (1995) J Biol Chem. 270, 14493-14499.
31. N. Okino, S. Kawabata, T. Saito, M. Hirata, T. Takagi, and S. Iwanaga, Purification, characterization, and cDNA cloning of a 27-kDa lectin (L10) from horseshoe crab hemocytes. (1995) J Biol Chem. 270, 31008-31015.
32. K. Inamori, T. Saito, D. Iwaki, T. Nagira, S. Iwanaga, F. Arisaka, and S. Kawabata, A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. (1999) J Biol Chem. 274, 3272-3278.
33. T. Saito, M. Hatada, S. Iwanaga, and S. Kawabata, A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. (1997) J Biol Chem. 272, 30703-30708.
34. S. Honda, M. Kashiwagi, K. Miyamoto, Y. Takei, and S. Hirose, Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. (2000) J Biol Chem. 275, 33151-33157.
35. S. Gokudan, T. Muta, R. Tsuda, K. Koori, T. Kawahara, N. Seki, Y. Mizunoe, S.N. Wai, S. Iwanaga, and S. Kawabata, Horseshoe crab acetyl group-recognizing lectins involved in innate immunity are structurally related to fibrinogen. (1999) Proc Natl Acad Sci U S A. 96, 10086-10091.
36. H.-G.B. Norman Kairies, Pablo Fuentes-Prior, Ryoko Tsuda, Tatsushi Muta, Sadaaki Iwanaga, and R.H. Wolfram Bode, and Shun-ichiro Kawabata, The 2.0-Å crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. (2001) BIOCHEMISTRY. 98, 13519-13524.
37. S.T. Chiou, Y.W. Chen, S.C. Chen, C.F. Chao, and T.Y. Liu, Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli, and protein A of Staphylococcus aureus from the hemolymph of Tachypleus tridentatus. (2000) J Biol Chem. 275, 1630-1634.
38. S.C. Chen, C.H. Yen, M.S. Yeh, C.J. Huang, and T.Y. Liu, Biochemical properties and cDNa cloning of two new lectins from the plasma of Tachypleus tridentatus: Tachypleus plasma lectin 1 and 2+. (2001) J Biol Chem. 276, 9631-9639.
39. E.L. Low, Characterization of bacteria and ligand binding activities of recombinant Tachypleus plasma lectin 2. (2010) National Tsing Hua University Master Thesis.
40. Y.-T. Huang, Functional Characterization of Bacteria and Ligand Binding Activities of Recombinant Tachypleus Plasma Lectin. (2013).
41. S.K. Ng, Y.T. Huang, Y.C. Lee, E.L. Low, C.H. Chiu, S.L. Chen, L.C. Mao, and M.D. Chang, A recombinant horseshoe crab plasma lectin recognizes specific pathogen-associated molecular patterns of bacteria through rhamnose. (2014) PLoS One. 9, e115296.
42. A. Boulbitch, B. Quinn, and D. Pink, Elasticity of the rod-shaped gram-negative eubacteria. (2000) Phys Rev Lett. 85, 5246-5249.
43. Z. Ali, N. Mumtaz, S.A. Naz, N. Jabeen, and M. Shafique, Multi-drug resistant pseudomonas aeruginosa: a threat of nosocomial infections in tertiary care hospitals. (2015) J Pak Med Assoc. 65, 12-16.
44. M.D. Obritsch, D.N. Fish, R. MacLaren, and R. Jung, Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. (2005) Pharmacotherapy. 25, 1353-1364.
45. K. Yokoyama, Y. Doi, K. Yamane, H. Kurokawa, N. Shibata, K. Shibayama, T. Yagi, H. Kato, and Y. Arakawa, Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. (2003) Lancet. 362, 1888-1893.
46. A. Giedraitiene, A. Vitkauskiene, R. Naginiene, and A. Pavilonis, Antibiotic resistance mechanisms of clinically important bacteria. (2011) Medicina (Kaunas). 47, 137-146.
47. B.L. Masecar, R.A. Celesk, and N.J. Robillard, Analysis of acquired ciprofloxacin resistance in a clinical strain of Pseudomonas aeruginosa. (1990) Antimicrob Agents Chemother. 34, 281-286.
48. J.C. Low and W. Donachie, A review of Listeria monocytogenes and listeriosis. (1997) Vet J. 153, 9-29.
49. F. Arslan, E. Meynet, M. Sunbul, O.R. Sipahi, B. Kurtaran, S. Kaya, A.C. Inkaya, P. Pagliano, G. Sengoz, A. Batirel, B. Kayaaslan, O. Yildiz, T. Guven, N. Turker, I. Midi, E. Parlak, S. Tosun, S. Erol, A. Inan, N. Oztoprak, I. Balkan, Y. Aksoy, B. Ceylan, M. Yilmaz, and A. Mert, The clinical features, diagnosis, treatment, and prognosis of neuroinvasive listeriosis: a multinational study. (2015) Eur J Clin Microbiol Infect Dis. 34, 1213-1221.
50. S. Mukherjee, C.L. Partch, R.E. Lehotzky, C.V. Whitham, H. Chu, C.L. Bevins, K.H. Gardner, and L.V. Hooper, Regulation of C-type lectin antimicrobial activity by a flexible N-terminal prosegment. (2009) J Biol Chem. 284, 4881-4888.
51. S.T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S.V. Gordon, K. Eiglmeier, S. Gas, C.E. Barry, 3rd, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. McLean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M.A. Quail, M.A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J.E. Sulston, K. Taylor, S. Whitehead, and B.G. Barrell, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. (1998) Nature. 393, 537-544.
52. A. O'Garra, P.S. Redford, F.W. McNab, C.I. Bloom, R.J. Wilkinson, and M.P. Berry, The immune response in tuberculosis. (2013) Annu Rev Immunol. 31, 475-527.
53. H. Soualhine, M. Benlemlih, N. Oudghiri, D. El Messaoudi, and M. Timinouni, Rapid detection of rifampicin-resistance mutations in multidrug-resistant strains of Mycobacterium tuberculosis in Morocco. (2001) Eur J Clin Microbiol Infect Dis. 20, 596-597.
54. H. Bercovier and V. Vincent, Mycobacterial infections in domestic and wild animals due to Mycobacterium marinum, M. fortuitum, M. chelonae, M. porcinum, M. farcinogenes, M. smegmatis, M. scrofulaceum, M. xenopi, M. kansasii, M. simiae and M. genavense. (2001) Rev Sci Tech. 20, 265-290.
55. W.I. Chou, T.W. Pai, S.H. Liu, B.K. Hsiung, and M.D. Chang, The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. (2006) Biochem J. 396, 469-477.
56. W.Y. Chou, W.I. Chou, T.W. Pai, S.C. Lin, T.Y. Jiang, C.Y. Tang, and M.D. Chang, Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules. (2010) Bioinformatics. 26, 1022-1028.
57. X. Yu, G. Jiang, H. Li, Y. Zhao, H. Zhang, L. Zhao, Y. Ma, C. Coulter, and H. Huang, Rifampin stability in 7H9 broth and Lowenstein-Jensen medium. (2011) J Clin Microbiol. 49, 784-789.
58. T. Ogawa, M. Watanabe, T. Naganuma, and K. Muramoto, Diversified carbohydrate-binding lectins from marine resources. (2011) J Amino Acids. 2011, 838914.
59. I. Vakonakis, T. Langenhan, S. Promel, A. Russ, and I.D. Campbell, Solution structure and sugar-binding mechanism of mouse latrophilin-1 RBL: a 7TM receptor-attached lectin-like domain. (2008) Structure. 16, 944-953.
60. Y. Ozeki, T. Matsui, M. Suzuki, and K. Titani, Amino acid sequence and molecular characterization of a D-galactoside-specific lectin purified from sea urchin (Anthocidaris crassispina) eggs. (1991) Biochemistry. 30, 2391-2394.
61. H. Tateno, Y. Shibata, Y. Nagahama, T. Hirai, M. Saneyoshi, T. Ogawa, K. Muramoto, and H. Kamiya, Tissue-specific expression of rhamnose-binding lectins in the steelhead trout (Oncorhynchus mykiss). (2002) Biosci Biotechnol Biochem. 66, 1427-1430.
62. H. Tateno, T. Ogawa, K. Muramoto, H. Kamiya, and M. Saneyoshi, Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. (2002) Biosci Biotechnol Biochem. 66, 604-612.
63. N. Shina, Tateno, H., Ogawa, T., Muramoto, K. ,Saneyoshi, M. and Kamiya, H., Isolation and characterization of L-rhamnose-binding lectins from chum salmon (Oncorhynchus keta) eggs. (2002) Fisheries Science. 68.
64. Y. Watanabe, H. Tateno, S. Nakamura-Tsuruta, J. Kominami, J. Hirabayashi, O. Nakamura, T. Watanabe, H. Kamiya, T. Naganuma, T. Ogawa, R.J. Naude, and K. Muramoto, The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. (2009) Dev Comp Immunol. 33, 187-197.
65. Y. Watanabe, N. Shiina, F. Shinozaki, H. Yokoyama, J. Kominami, S. Nakamura-Tsuruta, J. Hirabayashi, K. Sugahara, H. Kamiya, H. Matsubara, T. Ogawa, and K. Muramoto, Isolation and characterization of l-rhamnose-binding lectin, which binds to microsporidian Glugea plecoglossi, from ayu (Plecoglossus altivelis) eggs. (2008) Dev Comp Immunol. 32, 487-499.
66. T. Shirai, Y. Watanabe, M.S. Lee, T. Ogawa, and K. Muramoto, Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. (2009) J Mol Biol. 391, 390-403.
67. S. McGowan, A.M. Buckle, M.S. Mitchell, J.T. Hoopes, D.T. Gallagher, R.D. Heselpoth, Y. Shen, C.F. Reboul, R.H. Law, V.A. Fischetti, J.C. Whisstock, and D.C. Nelson, X-ray crystal structure of the streptococcal specific phage lysin PlyC. (2012) Proc Natl Acad Sci U S A. 109, 12752-12757.
68. S. Mukherjee, H. Zheng, M.G. Derebe, K.M. Callenberg, C.L. Partch, D. Rollins, D.C. Propheter, J. Rizo, M. Grabe, Q.X. Jiang, and L.V. Hooper, Antibacterial membrane attack by a pore-forming intestinal C-type lectin. (2014) Nature. 505, 103-107.
69. H. Yoshida, A. Yoshihara, M. Teraoka, S. Yamashita, K. Izumori, and S. Kamitori, Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site. (2013) FEBS Open Bio. 3, 35-40.
70. M.F. Giraud and J.H. Naismith, The rhamnose pathway. (2000) Curr Opin Struct Biol. 10, 687-696.
71. C. Roca, V.D. Alves, F. Freitas, and M.A. Reis, Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. (2015) Front Microbiol. 6, 288.
72. J.S. Lam, V.L. Taylor, S.T. Islam, Y. Hao, and D. Kocincova, Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide. (2011) Front Microbiol. 2, 118.
73. A.M. Abdel-Mawgoud, F. Lepine, and E. Deziel, Rhamnolipids: diversity of structures, microbial origins and roles. (2010) Appl Microbiol Biotechnol. 86, 1323-1336.
74. N. Promadej, F. Fiedler, P. Cossart, S. Dramsi, and S. Kathariou, Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. (1999) J Bacteriol. 181, 418-425.
75. F. Carvalho, M.L. Atilano, R. Pombinho, G. Covas, R.L. Gallo, S.R. Filipe, S. Sousa, and D. Cabanes, L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane. (2015) PLoS Pathog. 11, e1004919.
76. Y. Ma, R.J. Stern, M.S. Scherman, V.D. Vissa, W. Yan, V.C. Jones, F. Zhang, S.G. Franzblau, W.H. Lewis, and M.R. McNeil, Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. (2001) Antimicrob Agents Chemother. 45, 1407-1416.
77. N.M. van Sorge, J.N. Cole, K. Kuipers, A. Henningham, R.K. Aziz, A. Kasirer-Friede, L. Lin, E.T. Berends, M.R. Davies, G. Dougan, F. Zhang, S. Dahesh, L. Shaw, J. Gin, M. Cunningham, J.A. Merriman, J. Hutter, B. Lepenies, S.H. Rooijakkers, R. Malley, M.J. Walker, S.J. Shattil, P.M. Schlievert, B. Choudhury, and V. Nizet, The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. (2014) Cell Host Microbe. 15, 729-740.
78. G.L. Rosano and E.A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges. (2014) Front Microbiol. 5, 172.
79. S.T. Saito, S. Trentin Dda, A.J. Macedo, C. Pungartnik, G. Gosmann, D. Silveira Jde, T.N. Guecheva, J.A. Henriques, and M. Brendel, Bioguided Fractionation Shows Cassia alata Extract to Inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa Growth and Biofilm Formation. (2012) Evid Based Complement Alternat Med. 2012, 867103.
80. H. Tateno, A. Saneyoshi, T. Ogawa, K. Muramoto, H. Kamiya, and M. Saneyoshi, Isolation and characterization of rhamnose-binding lectins from eggs of steelhead trout (Oncorhynchus mykiss) homologous to low density lipoprotein receptor superfamily. (1998) J Biol Chem. 273, 19190-19197.
81. H. Tateno, T. Ogawa, K. Muramoto, H. Kamiya, T. Hirai, and M. Saneyoshi, A novel rhamnose-binding lectin family from eggs of steelhead trout (Oncorhynchus mykiss) with different structures and tissue distribution. (2001) Biosci Biotechnol Biochem. 65, 1328-1338.