簡易檢索 / 詳目顯示

研究生: 李奇樵
Chi-Chiao Li
論文名稱: The Robustness of the Probabilistic Neural System against Substrate Noise
機率型類神經網路系統對基板雜訊之抵抗能力
指導教授: 陳新
Hsin Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 115
中文關鍵詞: 機率型類神經基板雜訊CRBM
外文關鍵詞: Probabilistic Neural, Substrate Noise, CRBM
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著生物電子領域的快速發展,許多生物電子系統 ( Bio-electronic System )都已結合積體電路作成植入式元件 (Implantable Device) [1][2],並被廣泛應用在生物醫學領域。然而在充滿雜訊的生醫環境底下,元件內的生物電子系統必須要有相當的雜訊抵抗能力,才能夠確保生物晶片植入生物體內後能夠不受雜訊干擾正常運作。而其中「連續值侷限型波茲曼模型」(Continuous Restricted Boltzmann Machine,以下簡稱 CRBM )就是一種被認為相當具有發展潛力的可靠模型,因為這類模型的系統架構採用機率型輸出,比起採用傳統決定性 (Deterministic) 輸出的模型而言,將擁有更佳的計算錯誤容忍度,因此更適合在充滿雜訊的生醫環境底下工作。
    隨著CMOS製程的微小化以及SOC的發展應用日漸成熟,將來類比訊號的生物電子系統勢必會與數位電路整合至同一晶片上,而數位電路的訊號較強,很可能透過基版 (Substrate) 的訊號耦合而干擾到同一晶片上的生物電子系統。因此,本論文的研究目標就是研究基板雜訊對CRBM系統的效能影響,並模擬檢驗CRBM系統對於基板雜訊的雜訊容忍值。
    本論文研究是採用許多不同的環境設定去模擬基板雜訊對CRBM系統在二維人工資料的建模 (Modeling) 以及多維人工資料的辨識 (Classifying)之影響,從模擬的結果我們可以得知CRBM系統的雜訊容忍力頗佳,即使是對於伴隨偏移所產生的雜訊,也有相當優秀的抵抗能力。此外本研究也發現CRBM系統有可能可以利用電晶體內部雜訊或是其他雜訊來源來執行電路運算之可能性,提供了將來改善CRBM系統架構的另一個研究方向。


    前言 摘要 致謝 目錄 圖目錄 表目錄 第一章 導論 1.1 生物電子系統的近期發展 1.2 研究動機 1.3 研究目標 1.4 章節簡介 第二章 文獻回顧 2.1 連續值侷限型波茲曼模型 2.2 CRBM系統的硬體架構 2.3 雜訊產生之成因 2.4 基板雜訊分佈方式 第三章 雜訊效應對CRBM建模之影響 3.1 運用MATLAB模擬CRBM資料建模 3.2 雜訊之設定及干擾位置 3.3 判定準則:Kullback-Leibler Divergence 3.4 基板雜訊對CRBM建模效能之影響 3.4.1 不同參數雜訊所產生之影響 3.4.2 CRBM對基板雜訊之雜訊容忍度 3.4.3 外部雜訊對CRBM效能之其他影響 第四章 雜訊效應對CRBM辨識資料之影響 4.1 運用CRBM進行資料的辨識 4.2 主成份分析演算法 4.3 判定準則:Hidden Neuron Response 4.4 外部雜訊對CRBM的資料辨識效能影響 4.5 參數訓練完成後雜訊對CRBM的資料辨識效能影響 4.6 對調訓練資料與測試資料樣本數 第五章 非理想雜訊效應對CRBM之影響 5.1 偏移量對CRBM建模之影響 5.2 偏移量對CRBM辨識之影響 5.3 CRBM系統所能容忍之偏移量 5.4 CRBM系統的非理想雜訊容忍力 第六章 以基板雜訊取代CRBM雜訊產生器 6.1 雜訊等效換算公式推導 6.2 雜訊產生器減半時CRBM系統之雜訊容忍度 6.3 移除雜訊產生器之模擬結果 第七章 結論及未來研究方向 7.1 結論 7.2 未來研究方向

    [1] T.B.Tang, M.Ahmadian, A.F.Murray, A.Astaras, L.Wang, J.M.Cooper, S.P.Beaumont, B.W.Flynn, and D.R.S.Cumming, “Toward a miniature wireless integrated multisensor microsystem for industrial and biomedical applications,” IEEE Sens.J.Special Issue on Integr.Multisensor Syst.Signal Process., vol. 2, no.6, pp. 628-635, 2002.
    [2] E.A.Johannessen, L.Wang, S.W.Reid, D.R.S.cumming, L.Cui, T.B.Tang, M.Ahmadian, A.Astaras, P.Yam, A.F.Murray, B.W.Flynn, S.P.Beaumont, and J.M.Cooper, “Implementation of distributed sensors in a microsystems format,” IEEE Trans.Biomed.Eng., vol. 51, no.3, pp.525-535, 2004.
    [3] M.A.L.Nicolelis, “Actions from thoughts,” Nature, vol. 409 pp.403-407,2001.
    [4] M.Sun, M.Micklem L.Wei, Q.Liu, and R.Sclabassi, “Data communication between brain implants and computer,” IEEE Trans. Neural Syst, vol. 11, no. 2, pp. 189-192, 2003.
    [5] Chen, H. and Murray, A. F., “Continuous restricted Boltzmann machine with an implementable training algorithm,” Iee Proceedings-Vision Image and Signal Processing, vol. 150, no. 3, pp.153-158, 2003.
    [6] Chen, H, “Continuous-valued Probabilistic Neural Computation in VLSI,” PhD Thesis, Edinburgh University, UK, 2004.
    [7] Chen, H., Fleury, P., and Murray, A. F., “Continuous-Valued Probabilistic Behaviour in a VLSI Generative Model, ” IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 755-770, 2006.
    [8] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” Neural Computation, vol. 14, no. 8, pp. 1771-1880, 2002.
    [9] H. Wang, “Low-frequency noise study in electron devices: review and update,” Microelectronic Reliability, vol. 43, pp. 585-599, 2003.
    [10] M. Valenza, A. Hoffmann, D. Sodini, A. Laigle, F. Martinez, and D. Rigaud, “Overview of the impact of downscaling technology on 1/f noise in p-mosfets to 90nm,” IEEE Proc. Circuits, Devices, and Systems, vol. 151, pp. 102-110, April 2004.
    [11] Tsun-Lai Hsu, Yu-Chia Chen, Hua-Chou Tseng, V. Liang, J.S. Jan, “psub guard ring design and modeling for the purpose of substrate noise isolation in the SOC era,” IEEE Electron Device Letter, vol 12, pp. 693-695, September 2005.
    [12] M. Nagata, J.Nagai, K.Hijikata, T.Morie, A.Iwata, “Physical design guides for substrate noise reduction in CMOS digital circuits,” IEEE Journal of Solid-State Circuits, vol 36, pp. 539-549, March 2001.
    [13] M.Van Heijningen, J.Compiet, P.Wambacq, S.Donnay, M.G.E.Engels, I.Bolsens, “Analysis and experimental verification of digital substrate noise generation for epi-type substrates,” IEEE Journal of Solid-State Circuits, vol 35, pp. 1002-1008, July 2000.
    [14] Mark Shane Peng and Hau-Seung Lee, “Study of substrate noise and techniques for minimization,” IEEE Journal of Solid-state Circuits, vol. 39, no. 11, November 2004.
    [15] G. Blakiewicz, M.Jeske, M.Chrzanowska-Jeske, “Substrate noise optimization in early floorplanning for mixed signal SOCs,” IEEE International SoC Conference, pp. 301-304, September 2004.
    [16] Kazama Taisuke, Nakura Toru, Ikeda Makoto, Asada Kunihiro, “Optimization of Active Substrate Noise Cancelling Technique using Power Line di/dt Detector,” IEEE Asian Solid-State Circuit Conference, pp. 239-242, November 2006.
    [17] M. Felder, J. Ganger, “Analysis of ground-bounce induced substrate noise coupling in a low resistive bulk epitaxial process: design strategies to minimize noise effects on a mixed-signal chip,” IEEE Circuit and System Transaction, vol 46, pp. 1427-1436, November 1999.
    [18] Y. Murasaka, M. Nagata, T. Ohmoto, T. Morie, A. Iwata , “Chip-level substrate noise analysis with network reduction by fundamental matrix computation,” IEEE Quality Electronic Design International Symposium, pp. 492-487, March 2001.
    [19] G. Blakiewicz, M. Chrzanowska-Jeske, “Modeling of substrate noise block properties for early prediction,” IEEE Circuit and System International Symposium, vol 3, pp. 3015-4018, May 2005.

    [20] Mustafa Badaroglu, Piet Wambacq, Geert Van der Plas, Stéphane Donnay, Georges G. E. Gielen, and Hugo J. De Man, “Evolution of substrate noise generation mechanisms with CMOS technology scaling,” IEEE Transactions on Circuits and Systems-I: regular papers, vol. 53, no. 2, February 2006.
    [21] M. Van Heijningen, J. Compiet, P. Wambacq, S. Donnay, M. Engels, I. Bolsens, “Modeling of digital substrate noise generation and experimental verification using a novel substrate noise sensor,” IEEE European Solid-State Circuit Conference, pp. 186-189, November 1999.
    [22] M. Van Heijningen, M. Badaroglu, S. Donnay, G.G.E. Gielen, H.J. De Man, “Substrate noise generation in complex digital systems: efficient modeling and simulation methodology and experimental verification,” IEEE Journal of Solid-State Circuits, vol 37, pp. 1065-1072, August 2002.
    [23] T. Pompl, M. Kerber, G. Innertsberger, KH. h e r s , M. Obry, A.Kriemann, D. Temmle, “Modeling of substrate related extrinsic oxide failure distributions,” IEEE International Reliability Physics Symposium, Dallas, Texas, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE