簡易檢索 / 詳目顯示

研究生: 顏伯凱
Yan, Bo-Kai
論文名稱: 結合高分子與金屬感測電極於CMOS-MEMS電容式觸覺感測器之研究
A CMOS MEMS capacitive tactile sensor with polymer gap and metal sensing electrode
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: CMOS-MEMS觸覺感測器高分子材料
外文關鍵詞: CMOS-MEMS, tactile sensor, polymer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲利用TSMC 0.35μm 2P4M 標準CMOS製程平台並結合金屬氣相沉積與高分子材料之後製程(Post Process),製作一電容式觸覺感測器,其特色為將結構與CMOS電路整合在同一晶片,達到單石化之效果,另外使用此後製程所製作之感測結構,透過自行精確調整感測器結構厚度與感測間隙,可達到機械結構之改善。


    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 viii 第一章 緒論 1 1-1前言 1 1-2觸覺感測器 3 1-3文獻回顧 4 1-3-1觸覺感測器 4 1-3-2 CMOS相容後製程 7 1-4研究動機 8 第二章 觸覺感測器原理及設計 17 2-1感測方式及原理 17 2-2感測結構之設計 20 2-2-1 結構設計之參數考量 20 2-2-2 結構參數之模擬 21 2-2-3 非線性材料模型 23 2-3製程之設計特色 24 2-3-1 黃光及氣相沉積之CMOS後製程 24 2-3-2 高分子介電層設計 25 2-4感測器電路 26 第三章 觸覺感測器製程與量測 38 3-1 觸覺感測器製程 38 3-2 觸覺感測器光罩佈局 41 3-3 觸覺感測器製程結果 41 3-3 觸覺感測器量測 43 3-3-1 觸覺感測器初始訊號量測 43 3-3-2 系統整合量測 44 第四章 總結與未來工作 63 4-1 實驗總結 63 4-2 未來工作 64 參考文獻 66

    [1] M.H. Lee and H.R. Nicholls, “Review Article Tactile sensing for mechatronics--a state of the art survey,” Mechatronics, vol. 9, pp. 1-31, 1999.
    [2] http://wii.com
    [3] http://www.apple.com/iphone/
    [4] Texas Instruments, Inc., http://www.dlp.com/tech/
    [5] Analog Device, Inc., http://www.adi.com/
    [6] Akustica, Inc., http://www.akustica.com/
    [7] RF Micro Device, Inc., http://www.rfmd.com/
    [8] R. S. Payne, S. Sherman, S. Lewis, and R. T. Howe, “Surface micromachining : From Vision to Reality to Vision,” IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, San Francisco, CA, Feb., 1995, pp.164-165.
    [9] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS – Present and Future,” IEEE Int. Conf. Micro Electro Mech. Syst., Las Vegas, NV, Jan., 2002, pp.459-466.
    [10] C.S. Park, J. Parkb and D.-W. Leea, “A piezoresistive tactile sensor based on carbon fibers and polymer substrates, ” Microelectronic Engineering, vol. 86, pp. 1250-1253.
    [11] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, “Normal and Shear Force Measurement Using a Flexible Polymer Tactile Sensor With Embedded Multiple Capacitors, ” Journal of Microelectromechanical Systems, vol. 17, pp. 934-942, 2008.
    [12] H.-K. Lee, S.-I. Chang and E. Yoon, “Dual-Mode Capacitive Proximity Sensor for Robot Application: Implementation of Tactile and Proximity Sensing Capability on a Single Polymer Platform Using Shared Electrodes, ” Sensors Journal, IEEE, vol. 9, pp. 1748-1755, 2009.
    [13] H.-K. Lee, S.-I. Chang, E. Yoon, “A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment,” Journal of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006.
    [14] H.-K. Lee, J. Chung, S.-I. Chang, E. Yoon, “Polymer tactile sensing array with a unit cell of multiple capacitors for three-axis contact force image construction,” The 20th International Conference on Micro Electro Mechanical Systems 2007, Hyogo, Japan, Jan., 2007, pp. 623-626.
    [15] E.-S. Hwang, J.-H. Seo and Y.-J. Kim, “A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics,” Journal of Microelectromechanical Systems, vol. 16, pp. 556-563, 2007.
    [16] E.-S. Hwang and Y.-J. Kim, “A Polymer-based Flexible Tactile Sensor and Its Application to Robotics, ” IEEE SENSORS Conference, Atlanta, Georgia, Oct., 2007, pp. 784-787.
    [17] M.-Y. Cheng, B.-T. Liao, X.-H. Huang and Y.-J. Yang, “A flexible tactile sensing array based on novel capacitance mechanism, ” The 15th International Conference on Solid-State Sensors, Actuators and Microsystems, June, 2009, pp. 2182-2185.
    [18] M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi and I. Bársony, “CMOS integrated tactile sensor array by porous Si bulk micromachining,” Sensors and Actuators A: Physical, vol. 142, pp. 192-195, 2008.
    [19] T. Salo, K.-U. Kirstein, J. Sedivy, J. Grunenfelder, T. Vancura, G. Zund and H. Baltes, “Continuous blood pressure monitoring utilizing a CMOS tactile sensor,” 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Denver, Colorado, Sept., 2004, pp. 23226-23229.
    [20] K.-U. Kirstein, J. Sedivy, T. Salo, C. Hagleitner, T. Vancura, H. Baltes, “A CMOS-based tactile sensor for continuous blood pressure monitoring,” Solid-State Circuits Conference, 2004. ESSCIRC 2004. Proceeding of the 30th European, Leuven, Belgium, Sept., 2004, pp. 463 - 466.
    [21] T. Salo, K.-U. Kirstein, T. Vancura, H. Baltes, “CMOS-Based Tactile Microsensor for Medical Instrumentation,” Sensors Journal, IEEE, vol. 7, pp. 258-265, 2007.
    [22] C.-T. Ko, J.-P. Wu, W.-C. Wang, C.-H. Huang, S.-H. Tseng, Y.-L. Chen, M.S.-C. Lu, “A Highly Sensitive CMOS-MEMS Capacitive Tactile Sensor,” The 19th International Conference on Micro Electro Mechanical Systems 2006, Istanbul, Turkey, Jan., 2006, pp. 642-645.
    [23] C.-T. Ko, S.-H. Tseng, M.S.-C. Lu, “A CMOS Micromachined Capacitive Tactile Sensor With High-Frequency Output,” Journal of Microelectromechanical Systems, vol. 15, pp. 1708-1714, 2006.
    [24] B. Levey, P. Gieschke, M. Doelle, A. Trautmann, P. Ruther, O. Paul, “CMOS-integrated silicon 3d force sensor system for micro component coordinate measurement machines,” The 20th International Conference on Micro Electro Mechanical Systems 2007, Hyogo, Japan, Jan., 2007, pp. 611-614.
    [25] D. J. van den Heever, K.Schreve, C.Scheffer, “Tactile Sensing Using Force Sensing Resistors and a Super-Resolution Algorithm,” Sensors Journal, IEEE, vol. 9, pp. 29-35, 2009.
    [26] M. Leineweber, G. Pelz, M. Schmidt, H. Kappert and G. Zimmer, “New tactile sensor chip with silicone rubber cover,” Sensors and Actuators A: Physical, vol. 84, pp. 236-245, 2000.
    [27] Y.C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, W. Fang, “A tunable range/sensitivity CMOS-MEMS capacitive tactile sensor with polymer fill-in technique,” The 15th International Conference on Solid-State Sensors, Actuators and Microsystem, Denver, CO, June, 2009, pp. 2190-2193.
    [28] G.K. Fedder, “CMOS-based sensors,” in Sensors, 2005 IEEE, Irvine, CA, Oct., 2005, 4 pp.
    [29] Ansys, Inc., http://www.ansys.com/
    [30] CoventorWare, Coventor, Inc., http://www.coventor.com/
    [31] Nation Chip Implementation Center, http://www.cic.org.tw/
    [32] B. Charlot, F. Parrain, N. Galy, S. Basrour, B. Courtois, “A sweeping mode integrated fingerprint sensor with 256 tactile microbeams,” Journal of Microelectromechanical Systems, vol. 13, pp. 636-644, 2004.
    [33] H. Takao, K. Sawada, M. Ishida, “Monolithic silicon smart tactile image sensor with integrated strain sensor array on pneumatically swollen single-diaphragm structure,” Electron Devices, IEEE Transactions on, vol. 53, pp. 1250-1259, 2006.
    [34] Y.-K. Kim, K. Kim, K. R. Lee, W.-S. Cho, D.-S. Lee, W.H. Kim, N.-K. Cho, K.-B. Park, H.-D. Park, J.-H. Park, B.-K. Ju, “Technology development of silicon based CMOS tactile senor for robotics applications,” IEEE SENSORS 2006, the 5th IEEE conference on sensors, Daegu, Korea, Oct., 2006, pp. 734-737.
    [35] A. Wisitsoraat, V. Patthanasetakul, T. Lomas and A. Tuantranont, “Low cost thin film based piezoresistive MEMS tactile sensor,” Sensors and Actuators A: Physical, vol. 139, pp. 17-22, 2007.
    [36] J. Dargahi, R. Sedaghati, H. Singh and S. Najarian, “Modeling and testing of an endoscopic piezoelectric-based tactile sensor,” Mechatronics, vol. 17, pp. 462-467, 2007.
    [37] L. Chunyan, P.-M. Wu, S. Lee, A. Gorton, M. J. Schulz, C. H. Ahn, “Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer,” Journal of Microelectromechanical Systems, vol. 17, pp. 334-341, 2008.
    [38] K. Takashima, S. Horie, T. Mukai, K. Ishida and K. Matsushige, “Piezoelectric properties of vinylidene fluoride oligomer for use in medical tactile sensor applications,” Sensors and Actuators A: Physical, vol. 144, pp. 90-96, 2008.
    [39] Abaqus Inc., http://company.monster.com/hibbitt/
    [40] Y.-S. Yu and Y.-P. Zhao, “Deformation of PDMS membrane and microcantilever by a water droplet : Comparison between Mooney-Rivlin and linear elastic constitutive models” Journal of Colloid and Interface Science, vol. 332, pp. 467-476, 2009.
    [41] S.-H. Yoon, V. Reyes-Ortiz, K.-H. Kim, Y. H. Seo, M.R.K. Mofrad, “Analysis of Circular PDMS Microballoons With Ultralarge Deflection for MEMS Design,” Journal of Microelectromechanical Systems, vol. 19, pp. 854-864, 2010.
    [42] E. Meng and Y.-C. Tai, “Parylene etching techniques for microfluidics and bioMEMS,” The 18th International Conference on Micro Electro Mechanical Systems 2005, Miami Beach, Florida, Feb., 2005, pp. 568-571.
    [43] E. Meng, P.-Y. Li and Y.-C. Tai, “Plasma removal of Parylene C,” Journal of Micromechanics and Microengineering, vol. 18, p. 045004, 2008.
    [44] C. A. Gutierrez and E. Meng, “A dual function Parylene-based biomimetic tactile sensor and actuator for next generation mechanically responsive microelectrode arrays,” The 15th International Conference on Solid-State Sensors, Actuators and Microsystem, Denver, CO, June, 2009, pp. 2194-2197.
    [45] J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, pp. 975-982, 2002.
    [46] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
    [47] R. J. Baker, CMOS Circuit Design, Layout and Simulation. 2nd ED, Oxford University Press: Wiley -Interscience, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE