研究生: |
陳煜昕 Chen, Yu-Hsin |
---|---|
論文名稱: |
基於感測器分群之無線感測網路分散式估計之合作式訊息聚集方法研究 Sensor Clustering Based Cooperative Information Aggregation Schemes for Distributed Estimation in Wireless Sensor Network |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
洪樂文
蔡育仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 無線感測網路 、合作式訊息聚集 、單一位元傳輸 、多位元量化 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們提出基於感測器分群 (sensor clustering)之合作式訊息聚集 (cooperative information aggregation) 方法來改善估測效能。首先,我們將感測器分成多個群組,透過門檻分配 (threshold allocation) 的設計方法,使得多個群組共同合作估測單一未知訊號源,使感測區間 (sensing window) 內的解析度提升。在資訊融合中心 (fusion Center) ,我們提出兩種檢測估計方法,硬決策估計子 (hard decision estimator) 以及軟決策估計子 (soft decision estimator),加以利用全部群組中的資訊。另外,為了更進一步提升估測效能,我們提出可適性感測區間 (adaptive sensing window) 演算法。利用回饋機制 (feedback mechanism) 將感測區間做適應性地調整以提高解析度。結果顯示,基於感測器分群之合作式訊息聚集方法相較於傳統的合作式訊息聚集方法更能夠提供較佳的標準均方誤差 (NMSE) 在二進位對稱通道 (binary symmetric channels)中較低的交叉機率 (crossover probability) 區間。此外,隨著觀測雜訊 (observation noise) 的上升,基於感測器分群之合作式訊息聚集方法相較於合作式訊息聚集方法有較佳的抗雜訊能力。
[1] Y. Li, M. T. Thai, and W. Wu, Wireless Sensor Networks and Applica-
tions, Springer,2008, pp.331-347.
[2] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks: Tech-
nology, Protocols, and Applications, John Wiley & Sons, Hoboken, New
Jersey, 2007.
[3] J. Wu, Q. Huang, and T. Lee, \Minimal energy decentralized estimation
via exploiting the statistical knowledge of sensor noise variance," IEEE
Trans. Signal Process., vol.56, no.5, pp. 2171 2176, May 2008.
[4] J. Wu, Q. Huang, and T. Lee, \Energy-constrained decentralized bestlinear
unbiased estimation via partial sensor noise variance knowledge,"
IEEE Signal Process. Lett., vol. 15, pp. 33 36; 2008.
[5] J. Li and G. AlRegib, \Rate-constrained distributed estimation in wireless
sensor networks," IEEE Trans. Signal Process., vol. 55, no. 5, pp.
1634-1643, May 2007.
[6] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. J. Goldsmith, \Power scheduling
of universal decentralized estimation in sensor networks," IEEE Trans.
Signal Process., vol. 54, no. 2, pp. 413422, Feb. 2006.
[7] X. Luo and G. B. Giannakis, \Energy-constrained optimal quantization
for wireless sensor networks," EURASIP Journal on Advances in Signal
Processing, vol. 2008, Article ID 462930,2008.
[8] S. M. Kay, Fundamentals of Statistical Signal Process.: Estimation The-
ory. Upper Saddle River, NJ: Prentice-Hall, 1993.
[9] A. Ribeiro and G. B. Giannakis, \Bandwidth-constrained distributed
estimation for wireless sensor networksPart I: Gaussian PDF," IEEE
Trans. Signal Process., vol. 54, no. 3, pp. 11311143, Mar. 2006.
[10] A. Ribeiro and G. B. Giannakis, \Bandwidth-constrained distributed
estimation for wireless sensor networksPart II: Unknown probability
density function," IEEE Trans. Signal Process., vol. 54, no. 7, pp.
27842796, Jul. 2006.
[11] T. C. Aysal and K. E. Barner, \Constrained decentralized estimation
over noisy channels for sensor networks," IEEE Trans. Signal Process.,
vol. 56, no. 4, pp. 13981410, Apr. 2008.
[12] T. C. Aysal and K. E. Barner, \Blind decentralized estimation for bandwidth
constrained wireless snesor networks," IEEE Tran. Wireless Com-
mun., vol. 7, no. 5, pp. 14661471, May 2008.
[13] H. Li and J. Fang, \Distributed adaptive quantization and estimation
for wireless sensor networks," IEEE Trans. Signal Process Lett., vol. 14,
no. 10, pp. 669672, Oct 2007.
[14] J. Fang and H. Li, \Distributed adaptive quantization and estimation
for wireless sensor networks: From delta modulation to maximum likelihood,"
IEEE Trans. Signal Process., vol. 56, no.10, pp. 52465257,
Oct. 2008.
[15] Z. Luo, \Universal decentralized estimation in a bandwidth constrained
sensor network," IEEE Tran. Inf. Theory, vol. 51, pp. 22102219, Jun.
2005.
[16] Z.-Q. Luo, \An isotropic universal decentralized estimation scheme for
a bandwidth constrained ad hoc sensor network," IEEE J. Sel. Areas
Commun., vol. 23, pp. 735744, Apr. 2005.
[17] Z.-Q. Luo and J.-J. Xiao, \Decentralized estimation in an inhomogeneous
sensing environment," IEEE Trans. Inf. Theory, vol. 51, no. 10,
pp. 35643575, Oct. 2005.
[18] T.-Y. Wang, Y. S. Han, P. K. Varshney, and P.-N. Chen, \Distributed
fault-tolerant classication in wireless sensor networks," IEEE J. Select.
Areas Commun., vol. 23, no. 4, pp. 724734, Apr.2005.
[19] Y.-R. Tsai and C.-J. Chang, \Distributed Estimation with Cooperative
Information Aggregation in Wireless Sensor Networks," IEEE 70th
vehicular Technology Conference, VTC2009-Fall, 2009.
[20] Y.-R. Tsai and C.-J. Chang, \Cooperative Information Aggregation for
Distributed Estimation in Wireless Sensor Networks," IEEE Trans. Sig-
nal Process., vol. 59, no.8, pp. 38883876, Aug. 2011.
[21] Y.-R. Tsai and C.-J. Chang, \Cooperative Information Aggregation
Based Distributed Sequential Estimation in Wireless Sensor Networks,"
Communications (ICC), 2011 IEEE International Conference on.
[22] Y.-R. Tsai and C.-J. Chang, Energy-Ecient Cooperative Information
Aggregation Schemes for Distributed Estimation in Wireless Sensor Net-
works,2012.
[23] R. Rajagopal, M. J. Wainwright, and P. Varaiya, \Universal quantile
estimation with feedback in the communication-constrained setting," in
Proc. IEEE Int. Symp. Information Theory, Seattle, WA, Jul. 2006, pp.
836{840.
[24] F. Gray, \Pulse code communication," U.S. patent no. 2,632,058, March
17, 1953.
[25] S. M. Kay, Fundamentals of Statistical Signal Process.: Estimation The-
ory. Upper Saddle River, NJ: Prentice-Hall, 1993.
[26] D. J. C. MacKay, \Good error-correcting codes based on very sparse
matrices," IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399431, 1999.