研究生: |
劉孟璇 Liu, Meng-Syuan |
---|---|
論文名稱: |
CMOS電容式指叉微電極陣列感測應用之研究 Research on Sensing Applications of CMOS Capacitive Interdigitated Microelectrode Array |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
劉承賢
Liu, Cheng-Hsien 鄭裕庭 Cheng, Yu-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 指叉電極 、微電極 、電容式感測 、雙重關聯式取樣電路 、微珠感測 、不同pH值緩衝液感測 |
外文關鍵詞: | Interdigitated electrodes, microelectrodes, capacitive sensing, dual correlated sampling circuits, bead sensing, different pH buffer sensing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為CMOS整合式感測陣列的研究,用電容式感測方式來感測粒子。晶片使用TSMC 0.18μm CMOS 1P6M製程,感測器是指叉式電極,會設計一個間距、大小相同的指叉電極來組成16×16感測陣列,並透過解碼器控制每一個感測電極的訊號輸出到共用電路。關於電路的部分,感測電路為雙重關連式取樣電路(Correlated Double Sampling, CDS),並搭配緩衝器將電壓訊號輸出,期望能感測femto-farad電容之變化。
目標感測物有三種,包含粒徑3.5 μm的銅粉微珠、直徑10 μm的鎢製探針、粒徑2.5 μm的聚苯乙烯微珠,指叉電極會在空氣中感測前兩者目標物質,而聚苯乙烯微珠的感測會將指叉電極泡在去離子水環境中進行,因為去離子水介電常數為空氣的80倍,會放大指叉電容值,期望能在去離子水環境下看到比較大幅度的電容變化。除了這三種感測物,為了觀察指叉電容值的變化,有設計在不同pH值緩衝液環境下來量測指叉電容值。
指叉電極面積大小為15 μm×15 μm,透過CoventorWare模擬得到的電容值為19.28 fF,電路佈局後得到指叉電容值為23.4 fF,在量測上,空氣中平均指叉電容值為28.5 fF,去離子水中平均電容值為43.54 fF,在目標物質量測方面,可以感測到1.28 fF的電容變化。在不同pH值緩衝液的量測方面,在pH7緩衝液的平均指叉電容值為34.27 fF,指叉電容值會隨著pH值上升而增加,感測度為2.04 fF/pH (R^2=0.974),呈現高度正相關。
This thesis presents a CMOS integrated sensing arrays for particle and pH detection. The work is designed and fabricated using the TSMC 0.18 μm CMOS technology. An interdigitated electrode serves as the sensor. A 16×16 sensing array is created by constructing interdigitated electrodes with identical spacing and size, and the decoder controls the signal output from each sensing electrode to the shared sensing circuit, which is a switched-capacitor circuit implemented based on the correlated double sampling (CDS) technique. A buffer is utilized to output the voltage signal, in the hopes of sensing the change in femto-farad capacitance.
There are three types of target sensing substances, including copper powder beads with a diameter of 3.5 μm, tungsten probes with a diameter of 10 μm, and polystyrene beads with a diameter of 2.5 μm. The interdigitated electrodes specifically detect the two former target substances in the air. The sensing of polystyrene beads be carried out by soaking the interdigital electrodes in deionized water because the dielectric constant of deionized water is 80 times higher than that of air, which amplify the value of interdigitated electrodes capacitance, and it is expected to see a relatively large change in capacitance in a deionized water environment. In addition to these three sensing objects, in order to observe the change of the interdigitated capacitance, there is a design to measure the interdigitated capacitance under different pH buffer environments.
The area of the interdigitated electrodes is 15 μm×15 μm, and the capacitance value simulated by CoventorWare is 19.28 fF. The interdigitated capacitance value after the circuit layout is 23.4 fF. The average interdigitated capacitance value measured in the air is 28.5 fF. In deionized water, the average interdigitated capacitance value is 43.54 fF. In terms of target sensing objects measurement, a capacitance change of 1.28 fF can be detected. In the measurement of buffers with different pH values, the average capacitance value in buffer solution at pH7 is 34.27 fF. The interdigitated capacitance value increases as the pH value rises with a sensitivity of 2.05 fF/pH (R^2=0.974), showing a high degree of positive correlation.
[1]J. W. Judy, “Microelectromechanical systems (mems): fabrication, design and applications,” Smart materials and Structures, vol. 10, no. 6, p. 1115, 2001
[2]L.-S. Fan, Y.-C. Tai, and R. S. Muller, “Ic-processed electrostatic micro-motors,” Sensors and actuators, vol. 20, no. 1-2, pp. 41–47, 1989.
[3]R. G. Compton, G. G. Wildgoose, N. V. Rees, I. Streeter, and R. Baron, “Design, fabrication, characterisation and application of nanoelectrode arrays,” Chemical Physics Letters, vol. 459, no. 1-6, pp. 1-17, 2008.
[4]K. Stul ́ık, C. Amatore, K. Holub, V. Marecek, and W. Kutner, “Microelectrodes. definitions, characterization, and applications (technical report),” Pure and Applied Chemistry, vol. 72, no. 8, pp. 1483–92, 2000.
[5]Musayev, J., Adlgüzel, Y., Külah, H., Eminoğlu, S., and Akln, T., “Label-free DNA detection using a charge sensitive CMOS microarray sensor chip,” IEEE Sensors J., vol. 14, no. 5, pp. 1608-1616, 2014
[6]S. Ahadian, J. Ram ́on-Azc ́on, S. Ostrovidov, G. Camci-Unal, V. Hosseini, H. Kaji, K. Ino, H. Shiku, A. Khademhosseini, and T. Matsue, “Interdigitated array of pt electrodes for electrical stimulation and engineering of aligned muscle tissue,” Lab on a Chip, vol. 12, no. 18, pp. 3491–3503, 2012.
[7]K. M. Szostak, F. Mazza, M. Maslik, L. B. Leene, P. Feng, and T. G. Constan-dinou, “Microwire-cmos integration of mm-scale neural probes for chronic local field potential recording,” in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4.
[8]P. Bataillard, F. Gardies, N. Jaffrezic-Renault, C. Martelet, B. Colin, and B. Mandrand, “Direct detection of immunospecies by capacitance measurements,” Anal. Chem., vol. 60, no. 21, pp. 2374–2379, 1988.
[9]R. Matanguihan, K. Konstantinov, and T. Yoshida, “Dielectric measurement to monitor the growth and the physiological states of biological cells,” Bioprocess Engineering, vol. 11, no. 6, pp. 213-222, 1994.
[10]H. Wan, D. Ha, W. Zhang, H. Zhao, X. Wang, Q. Sun, and P. Wang, “Design of a novel hybrid sensor with microelectrode array and laps for heavy metal determination using multivariate nonlinear calibration,” Sensors and Actuators B: Chemical, vol. 192, pp. 755–761, 2014.
[11]A. Berduque, Y. H. Lanyon, V. Beni, G. Herzog, Y. E. Watson, K. Rodgers, F. Stam, J. Alderman, and D. W. Arrigan, “Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions,” Talanta, vol. 71, no. 3, pp. 1022–1030, 2007.
[12]] Z. Fekete, “Recent advances in silicon-based neural microelectrodes and microsystems: a review,” Sensors and Actuators B: Chemical, vol. 215, pp. 300–315, 2015.
[13]F. A. Aguiar, A. Gallant, M. Rosamond, A. Rhodes, D. Wood, and R. Kataky, “Conical recessed gold microelectrode arrays produced during photolithographic methods: Characterisation and causes,” Electrochemistry Communications, vol. 9, no. 5, pp. 879–885, 2007.
[14]O. Ordeig, N. Godino, J. Del Campo, F. X. Muñoz, F. Nikolajeff, and L. Nyholm, “On-chip electric field driven electrochemical detection using a poly (dimethylsiloxane) microchannel with gold microband electrodes,” Analytical chemistry, vol. 80, no. 10, pp. 3622–3632, 2008.
[15]S. Ding, S. R. Das, B. J. Brownlee, K. Parate, T. M. Davis, L. R. Stromberg, E. K. Chan, J. Katz, B. D. Iverson, and J. C. Claussen, “Cip2a immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening,” Biosensors and Bioelectronics, vol. 117, pp. 68–74, 2018.
[16]S. Kim, G. Yu, T. Kim, K. Shin, and J. Yoon, “Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 82, pp. 126–131, 2012.
[17]H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song, and M. Madou, “Carbon post-microarrays for glucose sensors,” Biosensors and Bioelectronics, vol. 23, no. 11, pp. 1637–1644, 2008.
[18]B. Zhang, K. L. Adams, S. J. Luber, D. J. Eves, M. L. Heien, and A. G. Ewing, “Spatially and temporally resolved single-cell exocytosis utilizing individually addressable carbon microelectrode arrays,” Anal. Chem, vol. 80, no. 5, pp. 1394–1400, 2008.
[19]T. Ozer and C. S. Henry, “Recent advances in sensor arrays for the simultaneous electrochemical detection of multiple analytes,” J. of The Electrochemical Society, vol. 168, no. 5, p. 057507, 2021.
[20]L. Wang, M. Veselinovic, L. Yang, B. J. Geiss, D. S. Dandy, and T. Chen, “A sensitive dna capacitive biosensor using interdigitated electrodes,” Biosensors and Bioelectronics, vol. 87, pp. 646–653, 2017.
[21]A. Quershi, and Y. Gurbuz, “A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker,” Biosensors and Bioelectronics, vol.25, pp. 877-882, 2009.
[22]V. Tsouti, and C. Boutopoulos, “Capacitive microsystems for biological sensing,” Biosensors and Bioelectronics, vol.27, pp. 1-11, 2011.
[23]R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin a,” Biosensors and Bioelectronics, vol. 40, no. 1, pp. 422–426, 2013.
[24]A. Qureshi, J. H. Niazi, S. Kallempudi, and Y. Gurbuz, “Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays,” Biosensors and Bioelectronics, vol. 25, no. 10, pp. 2318-2323, 2010.
[25]Y. Hu, F. Li, D. Han, T. Wu, Q. Zhang, L. Niu, and Y. Bao, “Simple and label-free electrochemical assay for signal-on DNA hybridization directly at undecorated graphene oxide,” Analytica chimica acta, vol. 753, pp. 82–89, 2012.
[26]X. Wang, F. Nan, J. Zhao, T. Yang, T. Ge, and K. Jiao, “A label- free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity,” Biosensors and Bioelectronics, vol. 64, pp. 386–391, 2015.
[27]Y.-J. Huang, C.-W. Huang, T.-H. Lin, C.-T. Lin, L.-G. Chen, P.-Y. Hsiao, B.-R. Wu, H.-T. Hsueh, B.-J. Kuo, H.-H. Tsai et al., “A cmos cantilever-based label-free dna soc with improved sensitivity for hepatitis b virus detection,” IEEE Trans. on Biomedical Circuits and Systems, vol. 7, no. 6, pp. 820–831, 2013.
[28]J. Paredes, S. Becerro, and S. Arana, “Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using petri dishes,” J. of Microbiological Methods, vol. 100, pp. 77–83, 2014.
[29]G. Nabovati, E. Ghafar-Zadeh, A. Letourneau, and M. Sawan, “Smart cell culture monitoring and drug test platform using cmos capacitive sensor array,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 4, pp. 1094–1104, 2018.
[30]C. Stagni, C. Guiducci, L. Benini, B. Ricc`o, S. Carrara, B. Samor ́ı, C. Paulus, M. Schienle, M. Augustyniak, and R. Thewes, “Cmos dna sensor array with integrated A/D conversion based on label-free capacitance measurement,” IEEE J. of Solid-State Circuits, vol. 41, no. 12, pp. 2956–2964, 2006.
[31]E. Ghafar-Zadeh, M. Sawan, V. P. Chodavarapu, and T. Hosseini-Nia, “Bacteria growth monitoring through a differential cmos capacitive sensor,” IEEE Trans. on Biomedical Circuits and Systems, vol. 4, no. 4, pp. 232–2, 2010.
[32]N. Couniot, L. A. Francis, and D. Flandre, “A 16 x 16 cmos capacitive biosensor array towards detection of single bacterial cell,” IEEE Trans. on Biomedical Circuits and Systems, vol. 10, no. 2, pp. 364–374, 2015.
[33]C.-M. Chen and M. S.-C. Lu, “A cmos capacitive biosensor array for highly sensitive detection of pathogenic avian influenza dna,” in 2017 19th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017, pp. 1632–1635.
[34]H. J. Panya, H. T. Kim, “Towards an automated MEMS-based characterization of benign and cancerous breast tissue using bioimpedance measurements,” Sensors and Actuators B: Chemical, vol.199, pp.259-268, 2014.
[35]A. Rivadeneyra, J. F. Salmerón, “A novel electrode structure compared with interdigitated electrodes as capacitive sensor,” Sensors and Actuators B:Chemical, vol.204, pp.552-560, 2014.
[36]C. Laborde, F. Pittino, H. Verhoeven, S. Lemay, L. Selmi, M. Jongsma, and F. Widdershoven, “Real-time imaging of microparticles and living cells with cmos nanocapacitor arrays,” Nature Nanotechnology, vol. 10, no. 9, pp. 791–795, 2015.
[37]A.-Y. Chang and M. S.-C. Lu, “A cmos magnetic microbead-based capacitive biosensor array with on-chip electromagnetic manipulation,” Biosensors and Bioelectronics, vol. 45, pp. 6-12, 2013.
[38]M. Carminati, L. Pedal`a, E. Bianchi, F. Nason, G. Dubini, L. Cortelezzi, G. Ferrari, and M. Sampietro, “Capacitive detection of micrometric airborne particulate matter for solid-state personal air quality monitors,” Sensors and Actuators A: Physical, vol. 219, pp. 80-87, 2014.
[39]P. Ciccarella, M. Carminati, M. Sampietro, and G. Ferrari, “Multichannel 65 zf rms resolution cmos monolithic capacitive sensor for counting single micrometer-sized airborne particles on chip,” IEEE J. of Solid-State Circuits, vol. 51, no. 11, pp. 2545-2553, 2016.
[40]O. Raaschou-Nielsen, Z. J. Andersen, R. Beelen, E. Samoli, M. Stafoggia, G. Weinmayr, B. Hoffmann, P. Fischer, M. J. Nieuwenhuijsen, B. Brunekreef et al., “Air pollution and lung cancer incidence in 17 european cohorts: prospective analyses from the european study of cohorts for air pollution effects (escape),” The lancet oncology, vol. 14, no. 9, pp. 813–822, 2013.
[41]G. Sancini, F. Farina, C. Battaglia, I. Cifola, E. Mangano, P. Mantecca, M. Camatini, and P. Palestini, “Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to milano winter fine particulate matter (pm2. 5),” PLoS One, vol. 9, no. 10, p. e109685, 2014.
[42]G.-C. Fang, C.-N. Chang, C.-C. Chu, Y.-S. Wu, P. P.-C. Fu, I.-L. Yang, and M.-H. Chen, “Characterization of particulate, metallic elements of tsp, pm2. 5 and pm2. 5-10 aerosols at a farm sampling site in taiwan, taichung,” Science of the Total Environment, vol. 308, no. 1-3, pp. 157–166, 2003.
[43]A. Zangwill, Modern electrodynamics. Cambridge University Press, pp.178, 2013.