簡易檢索 / 詳目顯示

研究生: 黃浩恩
Huang, Hao-En
論文名稱: 結合奇異點檢測與維度降低之強健演算法於高光譜影像分析
Joint robust outlier detection and dimension reduction for hyperspectral image analysis
指導教授: 祁忠勇
Chi, Chong-Yung
口試委員: 張陽郎
Chang, Yang-Lang
祁忠勇
Chi, Chong-Yung
簡仁宗
Chien, Jen-Tzung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: 奇異點維度降低高光譜影像
外文關鍵詞: outlier, dimension reduction, hyperspectral image
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高光譜影像分解(hyperspectral unmixing)是指從高光譜數據(hyperspectral data)中
    抽取出不同物質的光譜特徵(即端元(endmember))與端元對應於地表上所含的比
    例豐度圖(abundance maps)。維度降低在高光譜影像分解中是常見且首要的過程,
    可降低雜訊的影響和降低運算複雜度。仿射集合配適法(affine set fitting)在端元抽
    取(endmember extraction)演算法中是非常常見的降維度方法,可以使得高光譜數據
    於低維度空間中有最小的平方誤差(least-squares),然而奇異點(outlier)出現於高光
    譜影像中是不可避免的,奇異點會嚴重的影響仿射集合配適法的效能。在本論文
    中,我們提出了強健仿射集合配適法(robust affine set fitting), 希望同時達到偵測
    奇異點與提供強健仿射集合的目標。假定我們已知高光譜影像中的端元數和影像
    中的奇異點個數,不同於傳統的奇異點偵測演算法需要窗戶(window)的設置,強
    健仿射集合配適法是藉由估測無雜訊和奇異點影響的數據(noise-outlier-free data)
    和有奇異點存在的數據(outlier-data)使此兩項數據值有最小平方誤差。接著我們提
    出了RASF-NP 演算法,結合了RASF 和Neyman-Pearson 假設檢定(hypothesis testing)
    我們可以進一步的估測出準確的奇異點個數。經過RASF-NP 除去奇異點之後,
    高光譜影像分解將可以達到更好的效能。最後我們利用電腦模擬和真實影像實驗
    (內華達州LCVF 地區採集之高光譜影像)和現存的奇異點偵測演算法做比較,驗
    證了我們提出的演算法之優良效能和優良的運算效率。


    Hyperspectral umnixing is a process to extract the spectral signatures (endmembers) and
    the corresponding fractions (abundance maps) from the observed hyperspectral data of
    an area. Dimension reduction is a common, primary step in hypserspectral unmixing
    with the benefit of reducing noise effect and computation complexity. The affine set
    fitting [1] which provides the best representation to a given noisy hyperspectral data in the
    least-squares error sense is used as the dimension reduction method in many endmember
    extraction algorithms; however, the presence of outliers in the data has been proved to
    severely degrade the accuracy of affine set fitting. In this thesis, unlike conventional
    outlier detectors which may be sensitive to window settings, we propose a robust affine
    set fitting (RASF) algorithm for joint dimension reduction and outlier detection without
    any window setting. Given the number of outliers and endmembers in advance, the RASF
    algorithm is to find a data-representative affine set from the noise-outlier corrupted data,
    while making the effects of outliers minimum, in the least-squares error sense. The
    proposed RASF algorithm is then combined with Neyman-Pearson hypothesis testing,
    termed RASF-NP, to further estimate the number of outliers present in the data. By
    using RASF-NP, we can discard the outlier pixels and find a robust affine set to improve
    the consequent hyperspectral unmixing processing. Finally, we present simulations and
    real data experiment (AVIRIS hyperspectral data taken from LCVF site, Nevada [2])
    to demonstrate the superior performance and computation efficiency of our proposed
    algorithm to some existing outlier detection algorithms.

    Table of Contents Chinese Abstract ii Abstract iii Acknowledgments iv List of Figures vii List of Tables ix List of Notations xi 1 Introduction 1 1.1 Outliers in hyperspectral images . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Computer simulations and real data test . . . . . . . . . . . . . . . . . . 4 2 Signal model and Assumptions 6 3 Dimension Reduction Via Affine Set Fitting 8 4 Robust affine set fitting algorithm 10 5 Estimation of the number of outliers with RASF and Neyman-Pearson hypothesis (RASF-NP) 14 6 Computer Simulations 18 v 6.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.2 Performance indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.3 Monte Carlo Simulations for RASF algorithm over different preset number of outliers K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.4 Monte Carlo Simulations for different outlier detection algorithms with different SNRs and SORs . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.5 Monte Carlo Simulations for different EEAs with RASF-NP and ASF . . 30 7 Real data experiments 31 8 Conclusions 41 A Proof of the properties of projection F-norm 42 Bibliography 44

    Bibliography
    [1] T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, “A convex analysis based
    minimum-volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE
    Trans. Signal Processing, vol. 57, no. 11, pp. 4418–4432, Nov. 2009.
    [2] AVIRIS Free Standard Data Products, available online: http://aviris.jpl.nasa.
    gov/html/aviris.freedata.html.
    [3] A. Ambikapathi, T.-H. Chan, W.-K. Ma, and C.-Y. Chi, “Chance constrained robust
    minimum volume enclosing simplex algorithm for hyperspectral unmixing,” IEEE
    Trans. Geoscience and Remote Sensing, vol. 49, no. 2, pp. 4194–4209, Nov. 2011.
    [4] T. M. Lillesand, R. W. Kiefer, and J. W. Chipman, Remote Sensing and Image
    Interpretation. New York: Wiley, 2004.
    [5] C.-I. Chang, Hyperspectral Data Exploitation: Theory and Applications. New Jersey:
    John Wiley&Sons, Inc., 2007.
    [6] J. M. Bioucas-Dias and A. Plaza, “Hyperspectral unmixing: Geometrical, statistical,
    and sparse regression-based approaches,” in Proc. SPIE - Image and Signal
    Processing for Remote Sensing XVI, vol. 7830, 2010, pp. 78 300A1–78 300A15.
    [7] T. Han, D. G. Goodenough, A. Dyk, and J. Love, “Detection and correction of
    abnormal pixels in hyperion images,” in Proc. IEEE Int. Geosci. and Remote Sens.
    Symp., vol. 3, 2002, pp. 1327–1330.
    [8] D.Stein, S.Beaven, L.Hoff, r. E.Winte, A.Schaum, and A.Stocker, “Anomaly detection
    from hyperspectral imagery,” IEEE Signal Process. Mag., vol. 19, no. 1, pp.
    58–69, Jan. 2002.
    [9] Matteoli, M. S. Diani, and G. Corsini, “A tutorial overview of anomaly detection
    in hyperspectral images,” IEEE Aerospace and Electronic Systems Magazine, IEEE,
    vol. 25, no. 7, pp. 5 – 28, July 2010.
    [10] M. J. Carlotee, “A cluster-based approach for detection man-made objects and
    changes in imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 374–
    387, Feb. 2005.
    [11] S. Catterall, “Anomaly detection based on the statistics of hyperspectral imagery,”
    in Proc. SPIE Conf. Imagery Spectroscopy, vol. 43, 2004, pp. 171–178.
    44
    [12] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern
    with unknown spectral distribution,” IEEE Trans. Acoust., Speech, Signal Process.,
    vol. 38, no. 1, pp. 1760–1770, 1990.
    [13] B. Du and L. Zhang, “Random-selection-based anomaly detector for hyperspectral
    imagery,” IEEE Trans. Geoscience and Remote Sensing., vol. 49, no. 5, pp. 1578–
    1589, May 2011.
    [14] C.-I. Chang, “Orthogonal subspace projection (osp) revisited: A comprehensive
    study and analysis,” IEEE Int. Geosci. and Remote Sens. Symp., vol. 43, no. 3,
    pp. 512–518, March 2005.
    [15] S.-S. C. C.-I Chang, “Anomaly detection and classification for hyperspectral imagery,”
    IEEE Trans. Geoscience and Remote Sensing., vol. 40, no. 6, pp. 1314–1325,
    Jun. 2002.
    [16] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag, vol. 19,
    no. 1, pp. 44–57, Jan. 2002.
    [17] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A simplex volume maximization
    framework for hyperspectral endmember extraction,” IEEE Trans. Geo-
    science and Remote Sensing - Special Issue on Spectral Unmixing of Remotely Sensed
    Data, vol. 49, no. 11, pp. 4194–4209, Nov. 2011.
    [18] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace identification,”
    IEEE Trans. Geosci. Rem. Sens., vol. 46, no. 8, pp. 2435–2445, 2008.
    [19] J.M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: A fast algorithm
    to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4,
    pp. 898–910, Apr. 2005.
    [20] T.-H. Chan, W.-K.Ma, C.-Y. Chi, and A. Ambikapathi, “Hyperspectral unmixing
    from a convex analysis and optimization perspective,” in Proc. First IEEE Work-
    shop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
    (WHISPERS), Grenoble, France, August 26-28, 2009, pp. 1–4.
    [21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
    [22] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis framework for
    blind separation of non-negative sources,” IEEE Trans. Signal Processing, vol. 56,
    no. 10, pp. 5120–5134, Oct. 2008, available online: http://www.ee.cuhk.edu.hk/
    ~wkma/.
    [23] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge
    Univ. Press, 1985.
    [24] G. Arfken and H. Weber, Mathematical Methods for Physicists. Harcourt Academic
    Press, 2000.
    [25] L. Ludeman, Random Processes Filtering, Estimation, and Detection. Wiley-
    Interscience Publication, 2003.
    45
    [26] A. Delman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with orthogonality
    constraints,” SIAM Journal on Matrix Analysis and Applications, vol. 20,
    pp. 303–353, 1999.
    [27] H. W. Kuhn, “The Hungarian method for the assignment method,” Naval Research
    Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
    [28] H. Kwon and N. M. Nasrabadi, “Kernel rx-algorithm: A nonlinear anomaly detector
    for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp.
    388 – 397, Feb. 2005.
    [29] S.-S. Chiang, C.-I. Chang, and I. W. Ginsberg, “Unsupervised target detection in
    hyperspectral images using projection pursuit,” IEEE Trans. Geoscience and Remote
    Sensing., vol. 39, no. 7, pp. 1380–1391, July 2001.
    [30] Q. Du, “Optimal linear unmixing for hyperspectral image analysis,” in Proc. IEEE
    IGARSS, vol. 5, 2004, pp. 3219–3221.
    [31] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins University
    Press, 1989.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE