簡易檢索 / 詳目顯示

研究生: 陳智清
Chen, Chih-Ching
論文名稱: A Study on the Maximum Coverability Problem
最大覆蓋問題之研究
指導教授: 王炳豐
Wang, Biing-Feng
口試委員: 陳榮傑
Chen, Rong-Jaye
游弘毅
Yu, Hong-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 53
中文關鍵詞: 最大覆蓋問題字串比對演算法節奏辨識音樂資訊檢索萬用字元匹配
外文關鍵詞: maximum coverability problem, pattern matching algorithm, rhythm recognition, musical information retrieval, don't care matching
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A musical sequence is represented by a sequence of n positive numbers, in which each number represents the duration of two consecutive music notes. A rhythm is of length m and represented by a sequence of "quick" (Q) and "slow" (S) symbols, which correspond to the relative duration of notes, such that S = 2Q. The maximum coverability problem is to find the maximum-length substring covered by a given rhythm in a given musical sequence. The erratic maximum coverability problem is an extended version of the maximum coverability problem, in which temporal errors are allowed. These two problems are the focus of this thesis. Christodoulakis et al. showed that the maximum coverability problem can be reduced to a problem called the rhythm finding problem in O(n log H)-time, where H is the largest value in the given musical sequence. In this thesis, we first show that the rhythm finding problem can be further reduced to a special case of the well-known don't care matching problem in linear time. Consequently, by applying the existing algorithms for the don't care matching problem, our reduction immediately leads to an O(n log H + n log m)-time solution to the maximum coverability problem, which is as efficient as the current best upper bound. In addition, when k <= log m, our reduction leads to an improved O(n log H + nk) result, where k is the number of S in the rhythm. For the erratic maximum coverability problem, Chan et al. had two O(cn^2)-time heuristic algorithms, where c is the maximum number of elements allowed to be merged. In this thesis, we also show that the running time of their algorithm can be reduced to O(n^2).


    一段音樂序列是由 n 個正整數所組成的序列,其中每個正整數代表的是音符與音符的間隔時間。一段節奏是由「快」(Q) 跟「慢」(S) 這兩種符號所組成的序列,長度為 m 。其中 Q 跟 S 分別代表音樂中的一段時間間隔,並且 S 所代表的時間長度為 Q 的兩倍。「最大覆蓋問題」要找出在一段音樂序列中,被給定的節奏所覆蓋住的最長的子序列。「容錯最大覆蓋問題」是最大覆蓋問題的一個延伸版本,其中每個匹配允許誤差的產生。這兩個問題是本篇論文的核心。Christodoulakis 等人證明最大覆蓋問題可以在 O(n log H) 的時間內被簡化至「節奏搜尋問題」,此處 H 代表的是給定的音樂序列中最大的值。在此篇論文中,我們先證明節奏搜尋問題可以更進一步在線性時間內被簡化至萬用字元匹配問題的一個特例。若引用萬用字元匹配問題現有的演算法,我們可以直接得到一個 O(n log H + n log m) 的結果。此時間複雜度與目前最好的結果相符。另外,當 k <= log m 時,我們可以得到一個更佳的時間複雜度 O(n log H + nk),此處 k 是給定的節奏當中符號 S 的數量。針對容錯最大覆蓋問題,Chan 等人提出了時間複雜度 O(cn^2) 的演算法,此處 c 是允許被合併的元素的最大數量。在本篇論文中,我們也證明他們的演算法的時間複雜度可以被降低至 O(n^2)。

    Acknowledgement i Abstract ii Contents iv List of Figures v List of Tables vi Chapter 1 Introduction 1 1.1 Previous results 3 1.2 Contribution 4 1.3 Organization of the thesis 5 Chapter 2 Notation and Definitions 7 Chapter 3 The Maximum Coverability Problem 12 3.1 Previous algorithms 12 3.2 Summary of previous results 18 Chapter 4 A Reduction to the don't care matching problem 19 4.1 A reduction for the rhythm finding problem 19 4.2 Correctness of the reduction 22 4.3 Equivalence to the don't care matching problem 27 Chapter 5 The Erratic Maximum Coverability Problem 33 5.1 Notation and definitions 33 5.2 Previous algorithms 37 5.3 An improved greedy algorithm 42 Chapter 6 Conclusion and Future Work 48 Reference 51

    [1] Alexander R. Brinkman. PASCAL Programming for music Research. The University of Chicago Press, Chicago and London, 1990.
    [2] D. Byrd and E. Isaacson. A music representation requirement specification for academia. The Computer Music Journal, 27(4):43-57, 2003.
    [3] Peter Howell, Robert West, and Ian Cross, editors. Representing Musical Structure. Academic Press London, 1991.
    [4] Alan Marsden and Anthony Pople, editors. Computer Representations and Models in Music. Academic Press London, 1992.
    [5] Eleanor Selfridge-Field, editors. Beyond MIDI: The Handbook of Musical Codes. The MIT Press, 1997.
    [6] G. A. Wiggins, E. Miranda, A. Smaill, and M. Harris. A framework for the evaluation of music representation systems. The Computer Musical Journal, 17(3):31-42, 1993.
    [7] M. Mongeau and D. Sankoff. Comparison of musical sequences. Computers and the Humanities, 24:161-175, 1990.
    [8] D. A. Stech. A computer assisted approach to micro analysis of melodic lines. Computers and the Humanities, 15:211-221, 1981.
    [9] C. S. Iliopoulos, K. Lemstrom, M. Niyad, and Y. J. Pinzon. Evolution of musical motifs in polyphonic passages. In G. Wiggins, editors. Symposium on AI and Creativity in Arts and Science, Proceedings of AISB’02, pages 67-76, 2002.
    [10] K. Lemstrom. String matching techniques for music retrieval. PhD Thesis, University of Helsinki, Department of Computer Science, 2000.
    [11] K. Lemstrom and P. Laine. Musical information retrieval using musical parameters. In International Computer Music Conference, pages 341-348, 1993.
    [12] K. Lemstrom and J. Tarhio. Detecting monophonic patterns within polyphonic sources. In Multimedia Information Access Conference, volume 2, pages 1261-1279, 2000.
    [13] T. Crawford, C. S. Iliopoulos, and R. Raman. String matching techniques for musical similarity and melody recognition. Computer in Musicology, 11:227-236, 1998.
    [14] Arbee L. P. Chen, Costas Iliopoulos, Spiridon Michalakopoulos, and M. Sohel Rahman. Implementation of algorithms to classify musical texts according to rhythms. In C. Spyridis, A. Georagaki, G. Kouroupetroglou, and C. Anagnostopoulou, editors. Proceedings of the 4th Sound and Music Computing Conference, SMC’07, pages 134-141, 2007.
    [15] Manolis Christodoulakis, Costas S. Iliopoulos, Mohammad Sohel Rahman, and William F. Smyth. Song classifications for dancing. In Jan Holub and Jan Zdarek, editors, Stringology, pages 41-48. Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical University, 2006.
    [16] Manolis Christodoulakis, Costas S. Iliopoulos, Mohammed Sohel Rahman, and William F. Smyth. Identifying rhythms in musical texts. International Journal of Foundations of Computer Science, 19(1):37-51, 2008.
    [17] M. Kubica and T. Walen. Improved algorithm for rhythm recognition in musical seqnences. Texts in Algorithms, London Algorithmics 2008: Theory and Pratice, 11, 2009.
    [18] J. W.-T. Chan, C. S. Iliopoulos, S. Michalakopoulos, and M. S. Rahman. Erratic dancing. In Proceedings of the 5th International Symposium on Computer Music Modeling and Retrieval (CMMR 2008), Copenhagen, Denmark, May 2008.
    [19] Ye-In Chang, Jun-Hong Shen, Chen-Chang We, and Han-Ping Chou. An Efficient JMC Algorithm for the Rhythm Query in Music Databases. National Computer Symposium, Vol. 1, pp. 1-9, 2009.
    [20] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 1986.
    [21] Michael Werman. Fast convolution. In WSCG, 2003.
    [22] Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard matching. In STOC, pages 592-601, 2002.
    [23] C.S. Iliopoulos, Rahman, M.S.: Pattern Matching Algorithms with Don’t Cares. In: Proceedings of Student Research Forum of SOFSEM, pp. 116-216 (2007).
    [24] Lam, T.-W., Sung, W.-K., Tam, S.-L., Yiu, S.-M.: Space efficient indexes for string matching with don’t cares. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 846-857. Springer, Heidelberg (2007).
    [25] Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with errors and don’t cares. In: Proceedings of Symposium on Theory of Computing, pp. 91-100 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE