簡易檢索 / 詳目顯示

研究生: 鄭汝真
論文名稱: 改質多壁奈米碳管吸附水溶液中重金屬離子之探討
Adsorption of Metal Ions from Aqueous Solution by Surface Functionalized Multiwalled Carbon Nanotubes
指導教授: 吳劍侯
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 奈米碳管接枝二價銅離子吸附
外文關鍵詞: Carbon nanotube, Grafting, Copper(II) ion, Adsorption
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於奈米碳管表面官能基化可提高吸附水溶液中的重金屬之能力,且可解決奈米碳管在溶液中易凝聚的問題,故本研究利用奈米碳管表面接枝COOH官能基吸附水溶液中二價銅離子。改質後之奈米碳管於水溶液之溶解度約2500 mg/L,經由FTIR、TGA、反滴定之分析結果可知經改質後碳管表面產生羧基,其熱重損失約為13%,而表面接枝酸根量為1.25mmol/g。在改質碳管吸附銅離子之部分,探討實驗變數包括:反應時間、二價銅離子濃度、pH、離子強度、碳管劑量、溫度等,以尋求吸附系統之最佳條件,並利用Langmuir、Frendlich模式來討論其吸附機制。實驗結果顯示改質碳管吸附水溶液中銅離子之反應中,pH及碳管劑量主要為影響吸附量之因素,而由離子強度實驗中可推測兩者間反應包括離子交換。碳管鹼化使接枝的高分子鏈舒展開後,動力平衡時間在1分鐘內即可達平衡。相對於未接枝前碳管幾乎不吸附銅離子的情況,在30℃反應條件下,奈米碳管對銅離子的吸附量由3.77 mg/g增加為16.72 mg/g,奈米碳管對水溶液中銅離子去除效率明顯增加。吸附模式可符合Langmuir模式為單層吸附反應,由所求得之熱力參數指出此吸附為一自發吸熱反應。吸附後之銅離子可利用0.5 mM硝酸回收,而碳管再利用5次後,效率為84%,具有良好的再生效率。


    In this work, pure multiwalled carbon nanotubes (MWCNTs) were grafted poly acrylic acid to adsorb effectively Cu(II) ions from aqueous solution. The solubility of functionalized MWCNTs was 2500 mg/L in aqueous solution. Identified by FTIR, TGA, and titration, the surface grafted carboxyl groups were 1.25 mmol/g MWCNTs ,and weight loss was 13%. The adsorption of Cu(II) onto functionalized MWCNTs was studied as a function of contact time, pH, ionic strength, MWCNT dosage, and temperature. The results show that Cu(II) adsorption onto MWCNT depends strongly on pH and MWCNT dosage. Cu(II) ions can easily adsorb onto MWCNTs prepared in alkaline solution. Kinetic data show that the adsorption process achieved equilibrium within less than 1minutes. The effect of ionic strength indicated that the Cu(II) adsorption onto functionalized MWCNT might include ion exchange. The Cu(II) adsorption capacity of functionalized MWCNTs was 17.62 mg/g, which is greater than that of pure CNTs, 3.4 mg/g. This reflects that functionalized MWCNT are more effective sorbents. The adsorption data fit Langmuir isotherm well. The thermodynamic analysis revealed the adsorption of Cu(II) ions onto functionalized MWCNTs is an endothermic and spontaneous process. Results of desorption study showed that Cu(II) ions could be removed from MWCNTs by 0.5 mol/L nitric acid and 84% sorption capacity of MWCNTs remained after 5 cycles.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 引言 1 1.1 簡介 1 1.2 研究目的與動機 2 第二章 文獻回顧 3 2.1重金屬來源及危害 3 2.2奈米碳管介紹 5 2.2.1 奈米碳管種類 5 2.2.2 奈米碳管特性 7 2.2.3 奈米碳管之合成方法 8 2.2.4 奈米碳管表面改質方法 8 2.3奈米碳管吸附重金屬離子之探討 13 2.4固液界面吸附模式探討 16 2.4.1等溫吸附方程式 16 2.4.2動力反應式 18 2.4.3熱力反應式 20 第三章 實驗方法 22 3.1 實驗材料與儀器 22 3.1.1 實驗材料 22 3.1.2 分析儀器 24 3.2 實驗流程與內容 26 3.3 實驗與分析方法 27 3.3.1奈米碳管官能化處理 27 3.3.1.1 奈米碳管純化處理 27 3.3.1.2 奈米碳管表面改質 27 3.3.1.3 改質碳管鹼化 28 3.3.1.4 碳管水溶液之定量 28 3.3.2 改質多壁奈米碳管吸附水溶液中銅離子之研究 28 3.3.2.1 動力平衡吸附 28 3.3.2.2 pH對吸附效率的影響 28 3.3.2.3 碳管劑量對吸附效應的影響 29 3.3.2.4 離子強度對吸附效應的影響 29 3.3.2.5 等溫吸附平衡實驗 29 3.3.2.6 溫度對吸附效應之影響 30 3.3.2.7 脫附再生試驗 30 3.3.2.8 反滴定實驗 31 第四章 結果與討論 32 4.1改質前後奈米碳管特性分析 32 4.1.1沉降試驗 32 4.1.2 穿透式電子顯微鏡分析 34 4.1.3 比表面積分析 34 4.1.4 傅立葉轉換紅外線光譜儀分析 35 4.1.5 熱重分析 36 4.1.6 改質碳管表面官能基定量 38 4.1.7 界達電位分析 39 4.2 分析方法偵測極限與再現性 42 4.3 改質奈米碳管吸附銅離子之參數探討 43 4.3.1 動力吸附反應 43 4.3.2 pH對吸附效率之影響 46 4.3.3 碳管劑量對吸附效率之影響 49 4.3.4 離子強度對吸附效率之影響 50 4.4 改質奈米碳管吸附枝等溫吸附平衡反應 52 4.4.1 等溫吸附模式之探討 52 4.4.2 吸附熱力學探討 54 4.4.3 鹼化碳管與純化碳管吸附能力比較 58 4.4.4 不同改質條件之碳管吸附效率比較 62 4.5 奈米碳管脫附再生試驗 67 4.5.1 比較不銅酸亦對銅離子脫附效果 67 4.5.2 再生次數與效率 67 第五章 結論與建議 69 5.1 結論 69 5.2建議 70 參考文獻 71 表目錄 表 2-1國內重金屬產生現況 3 表 2-2 每日最大容許銅攝取量表 4 表 2-3 單壁奈米碳管結構與電性 7 表 2-4不同酸劑改質碳管之吸附效率比較 15 表 2-5不同吸附劑之吸附效率比較 15 表 3-1 商用奈米碳管材料物性 22 表 3-2 火焰式原子吸收光譜儀分析參數 25 表 3-3吸附實驗分析參數表 31 表 4-1 改質前後奈米碳管之比表面積分析 35 表 4-2 FTIR分析特定官能基對應之吸收波數 35 表 4-3 表面酸根量比較 39 表 4-4 空白分析結果 42 表 4-5 二階動力反應係數 45 表 4-6 不同離子強度模擬Langmuir模式所得之吸附參數 52 表 4-7 改質前後碳管吸附銅離子之Langmuir isotherm參數比較 54 表 4-8 不同溫度之Langmuir與Freundlich模式參數 58 表 4-9 改質奈米碳管吸附銅離子反應之熱力參數 60 表 4-10 氫鍵影響不同本酸之解離常數變化 61 表 4-11 不同合成條件與吸附效能之比較 64 圖目錄 圖2-1 奈米碳管結構之TEM圖 5 圖2-2 石墨片捲曲成奈米碳管之示意圖 6 圖2-3 碳管結構(a) armchair, (b) zigzag, and (c) chiral tubes 6 圖2-4 碳管表面鹵化反應機制 9 圖2-5碳管表面進行合環反應之機制 10 圖2-6 利用electrochemical形成自由基修飾奈米碳管 11 圖2-7 利用thermal chemical形成自由基修飾奈米碳管 11 圖2-8 奈米碳管經由 Grafting from 法接枝polyelectroly 12 圖 2-9 用Grafting to 法產生nanotube-polystyrene複合材料 12 圖 2-10 不同pH值下聚丙烯酸在碳管表面的吸附構型 12 圖 3-1 界達電位示意圖 25 圖 3-2 研究架構及實驗設計 26 圖3-3 碳管純化及改質流程 27 圖4-1 奈米碳管接枝聚丙烯酸之反應機制 32 圖4-2 聚丙烯酸在碳管表面形成靜電位阻效應 33 圖4-3 改質奈米碳管及純化碳管經之沉降情形 33 圖4-4 改質奈米碳管之TEM圖 34 圖4-5 改質奈米碳管之FTIR圖 36 圖4-6 奈米碳管在改質前後之熱重分析圖 37 圖4-7 Hsin et al.(2006)發表之改質碳管熱重分析圖 37 圖4-8 改質碳管表面酸根之滴定曲線圖 38 圖4-9 改質前後奈米碳管之界達電位分析圖 40 圖4-10 聚丙烯酸在不同pH值下之解離度 41 圖4-11 奈米碳管經三種酸液改質後之界達電位圖 41 圖4-12 原子吸收光譜儀建立三次銅離子溶液之檢量線圖 42 圖4-13 奈米碳管與銅離子之吸附動力反應圖 44 圖4-14 吸附結果模擬擬ㄧ次與擬二次速率反應式圖 46 圖4-15 水溶液中二價銅離子物種分佈圖 47 圖4-16 pH對奈米碳管吸附銅離子效率之影響 48 圖4-17 Kurbatov Plot 49 圖4-18 奈米碳管劑量對吸附效率之影響 50 圖4-19 離子強度對吸附效率之影響 51 圖4-20 改質前後碳管對銅離子之吸附效率比較圖 53 圖4-21 銅離子與羧基進行1:2反應之結構示意圖 54 圖4-22 不同溫度之奈米碳管對銅離子之等溫吸附曲線 55 圖4-23 不同溫度之等溫吸附模擬Langmuir equation關係圖 56 圖4-24 不同溫度之等溫吸附模擬Freundlich equation關係圖 57 圖4-25 7種苯酸結構 61 圖4-26 等溫平衡吸附實驗三次之標準偏差 62 圖4-27 不同合成條件之吸附量比較 .65 圖4-28 不同酸洗時間之純化碳管對銅離子之吸附量比較 66 圖4-29 利用不同酸液(硝酸、硫酸、鹽酸)隨時間之脫附效率 67 圖4-30改質碳管經五次再生之吸附效率 68

    Acharya, M.; Raich, B. A.; Foley, H. C.; Harold, M. P.; Lerou, J. J., Metal-Supported Carbogenic Molecular Sieve Membranes: Synthesis and Applications. Industrial and Engineering Chemistry Research 1997, 36, 2924-2930.
    Ajayan, P. M., Nanotubes from Carbon. Chemical Review 1999, 99, 1787-1799.
    Al-Asheh, S.; Banat, F.; Al-Omari, R.; Duvnjak, Z., Predictions of Binary Sorption Isotherms for the Sorption of Heavy Metals by Pine Bark Using Single Isotherm Data. Chemosphere 2000, 41, 659-665.
    An, H. K.; Park, B. Y.; Kim, D. S., Crab Shell for the Removal of the Heavy Metals from Aqueous Solution. Water Reserch 2001, 35, 3551-3556.
    Anirudhan, T. S.; Unnithan, M. R.; Divya, L.; Senan, P., Synthesis and Characterization of Polyacrylamide-Grafted Coconut Coir Pith Having Carboxylate Functional Group and Adsorption Ability for Heavy Metal Ions. Journal of Applied Polymer Science 2006, 104, 3670-3681.
    Balasubramanian, K.; Friedrich, M.; Jiang, C.; Fan, Y.; Mews, A.; Burghard, M.; Kern, K., Electrical Transport and Confocal Raman Studies of Electrochemically modified Individual Carbon nanotubes. Advanced Material 2003, 15, 1515-1518.
    Bandow, S.; Takizawa, M.; Hirahara, K.; Yudasaka, M.; Iijima, S., Raman Scattering Study of Double-Wall Carbon Nanotubes Derived from the Chains of Fullerenes in Single-Wall Carbon Nanotubes. Chemical Physics Letters 2001, 337, 48-54.
    Banerjee, S.; Wong, S. S., Rational Sidewall Functionalization and Purification of Single-Walled Carbon Nanotubes by Solution-Phase Ozonolysis. Journal of Phyical Chemistry 2002, 106, 12144-12151.
    Banerjee, S.; Wong, S. S., Demonstration of Diameter-Selective Reactivity in the Sidewall Ozonation of SWNTs by Resonance Raman Spectroscopy. Nano Letter 2004, 4, 1445.
    Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon Nanotubes - the Route Toward Applications. Science 2002, 297, 787-792.
    Boul, P. J.; Liu, J.; Mickelson, E. T.; Huffman, C. B.; Ericson, L. M.; Chiang, I. W.; Smith, K. A.; Colbert, D. T.; Hauge, R. H.; Margrave, J. L.; Smalley, R. E., Reversible Sidewall Functionalization of Buckytubes. Chemical Physics Letters 1999, 310, 367-372.
    Chen, C.; Wang, X., Adsorption of Ni(II) from Aqueous Solution Using Oxidized Multiwall Carbon Nanotubes. Industrial and Engineering Chemistry Research 2006, 45, 9144-9149.
    Davis, W. M.; Eriekson, C. L.; Johnston, C. T.; Delfino, J. J.; Porter, J. E., Quantitative Fourier Transfrom Infrared Spectroscopic Investigation of Humic Substance Functional Groups Composition. Chmosphere 1999, 38, 2913-2928.
    Dujardin, E.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K., Capillarity and Wetting of Carbon Nanotubes. Science 1994, 265, 1850-1852.
    Dyke, C. A.; Tour, J. M., Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions. Nano Letter 2003, 3, 1215-1218.
    Francois, J.; Heitz, C.; Mestdagh, M. M., Spectroscopic Study (u.v.-Visible and Electronparamagnetic Resonance) of the Interactions Between Synthetic Polycarboxylates and Cooperions. Polymer 1997, 38, 5321-5332.
    Gao, H.; Kong, Y.; Cui, D., Spontaneous Insertion of DNA Oligonucleotides into Carbon Nanotubes. Nano Letter 2003, 3, 471-473.
    Hackley, V. A., Colloidal Processing of Silicon Nitride with Poly(acrylic acid): I, Adsorption and Electrostatic Interactions. Journal of the American Ceramic Society 1997, 80, 2315-2325.
    Holzinger, M.; Steinmetz, J.; Samaille, D.; Glerup, M.; Paillet, M.; Bernier, P.; Ley, L.; Graupner, R., [2+1] Cycloaddition for Cross-Linking SWCNTs. Carbon 2004, 42, 941.
    Hsin, Y.-L.; Lai, J.-Y.; Hwang, K. C.; Lo, S.-C.; Chen, F.-R.; Kai, J. J., Rapid Surface Functionalization of Iron-Filled Multi-Walled Carbon Nanotubes. Carbon 2006, 44, 3328-3335.
    Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58.
    Kamaras, K.; Itkis, M. E.; Hu, H.; Zhao, B.; Haddon, R. C., Covalent Bond Formation to a Carbon Nanotube Metal. Science 2003, 301, 1501.
    Kelly, K. F.; Chiang, I. W.; Mickelson, E. T.; Hauge, R. H.; L., M. J.; Wang, X.; Scuseria, G. E.; Radloff, C.; Halas, N. J., Insight into the Mechanism of Sidewall Functionalization of Single-Walled Nanotubes: an STM Study. Chemical Physics Letters 1999, 313, 445-450.
    Kweon, D.-K.; Choi, J.-K.; Kim, E.-K.; Lim, S.-T., Adsorption of Divalent Metal Ions by Succinylated and Oxidized Corn Starches. Carbonhydrate Polymers 2001, 46, 171-177.
    Li, Y.-H.; Di, Z.; Ding, J.; Wu, D.; Luan, Z.; Zhu, Y., Adsorption Thermodynamic, Kinetic and Desorption Studies of Pb2+ on Carbon Nanotubes. Water Reserch 2005, 39, 605-609.
    Li, Y.-H.; Ding, J.; Luan, Z.; Di, Z.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B., Competitive Adsorption of Pb2+, Cu2+ and Cd2+ Ions from Aqueous Solutions by Multiwalled Carbon Nanotubes. Carbon 2003, 41, 2787-2792.
    Li, Y.-H.; Wang, S.; Luan, Z.; Ding, J.; Xu, C.; Wu, D., Adsorption of Cadmium(II) from Aqueous Solution by Surface Oxidized Carbon Nanotubes. Carbon 2003, 41, 1057-1062.
    Li, Y.-H.; Wang, S.; Wei, J.; Zhang, X.; Xu, C.; Luan, Z.; Wu, D.; Wei, B., Lead Adsorption on Carbon Nanotubes. Chemical Physics Letters 2002, 357, 263-266.
    Lu, C.; Chiu, H.; Liu, C., Removal of Zinc(II) from Aqueous Solution by Purified Carbon Nanotubes: Kinetics and Equilibrium Studies. Industrial and Engineering Chemistry Research 2006, 45, 2850-2855.
    Metcalf; Eddy, Wastewater Engineering. fourth ed.; Mc Graw Hill: 2004; p 509-1162
    Mgaidi, A.; Ben Brahim, F.; Oulahna, D.; El Maaoui, M.; A., D. J., Change in the Surface Area and Dissolution Rate during Acid Leaching of Phosphate Particles at 25 °C. Industrial and Engineering Chemistry Research 2003, 42, 2067-2073.
    Mgaidi, A.; Brahim, F. B.; Oulahna, D.; Maaoui, M. E.; Dodds, a. J. A., Change in the Surface Area and Dissolution Rate during Acid Leaching of Phosphate Particles at 25 °C. Industrial and Engineering Chemistry Research 2003, 42, 2067-2073.
    Mickelson, E. T.; Chiang, I. W.; Zimmerman, J. L.; Boul, P. J.; Lozano, J.; Liu, J.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L., Solvation of Fluorinated Single-Wall Carbon Nanotubes in Alcohol Solvents. Journal of Physical Chemistry B 1999, 103, 4318-4322.
    Paik, U., Dispersant–Binder Interactions in Aqueous Silicon Nitride Suspensions. Journal of the American Ceramic Society 1999, 82, 833-840.
    Peng, H.; Reverdy, P.; Khabashesku, V. N.; Margrave, J. L., Sidewall Functionalization of Single-Walled Carbon Nanotubes with Organic Peroxides. Chemical Communications 2003, 3, 362.
    Qin, S.; Qin, D.; Ford, W. T.; Herrera, J. E.; Resasco, D. E.; Bachilo, S. M.; Weisman, R. B., Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate. Macromolecules 2004, 37, 3965-3967.
    Qin, S.; Qin, D.; Ford, W. T.; Resasco, D. E.; Herrera, J. E., Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods. Macromolecules 2004, 37, 752-757.
    Rajagopalan, R.; Ponnaiyan, A.; Mankidy, P. J.; Brooks, A. W.; Yia, B.; Foley, H. C., Molecular sieving platinum nanoparticle catalysts kinetically frozen in nanoporous carbon. Chemical Communications 2004, 21, 2498-2499.
    Reddad, Z.; Gerente, C.; Andres, Y.; Lecloirec, P., Adsorption of Several Metal Ions onto a Low-Cost Biosorbent: Kinetic and Equilibrium Studies. Environmental Science and Technology 2002, 36, 2067-2073.
    Schenkel, L. S.; Spaulding, W. D.; DiLillo, D.; Silverstein, S. M., Histories of Childhood Maltreatment in Schizophrenia: Relationships with PremorbidFunctioning, Symptomatology, and CognitiveDeficits. Schizophrenia Research 2005, 76, 273-286.
    Shan, S.; Herschlag, D., Energetic Effects of Multiple Hydrogen Bonds. Implications for Enzymatic Catalysis. Journal of American Chemical Society 1996, 118, 5515-5518.
    Stevens, J. L.; Huang, A. Y.; Peng, H.; Chiang, I. W.; Khabashesku, V. N.; Margrave, J. L., Sidewall Amino-Functionalization of Single-Walled Carbon Nanotubes through Fluorination and Subsequent Reactions with Terminal Diamines. Nano Letter 2003, 3, 331-336.
    Stumm, W., Chemistry of the Solid-Water Interface. Weily Interscience: Canada, 1992.
    Tanzi, R. E.; Petrukhin, K.; Chernov, I.; Pellequer, J. L.; Wasco, W.; Ross, B.; Romano, D. M.; Parano, E.; Pavone, L.; Brzustowicz, L. M., The Wilson Disease Gene is a Copper Transporting ATPase with Homology to the Menkes Disease Gene. Nat Genet 1993, 5, 344-50.
    Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M., Chemistry of Carbon Nanotubes. Chemical review 2006, 106, 1105-1136.
    Terrones, H.; Terrones, M.; Hernández, E.; Grobert, N.; Charlier, J.-C.; Ajayan5, P. M., New Metallic Allotropes of Planar and Tubular Carbon. Physical Review Letters 2000, 84, 1716-1719.
    Toumi, N.; Bonnamour, I.; Joly, J.-P.; Finqueneisel, G.; Retailleau, L.; Kalfat, R.; Lamartime, R., Grafting of calix[4]arene derivative on activated carbon surface. Materials science and Engineering C 2006, 26, 490-494.
    Umek, P.; Seo, J. W.; Hernadi, K.; Mrzel, A.; Pechy, P.; Mihailovic, D. D.; Forro, L. s., Addition of Carbon Radicals Generated from Organic Peroxides to Single Wall Carbon Nanotubes. Chemistry of Materials 2003, 15, 4751-4755.
    Vaughan, T.; Seo, C. W.; Marshall, W. E., Remocal of Selected Metal Ions From Aqueous Solution Using Modified Corncobs. Bioresource Technology 2001, 78, 133-139.
    Wang, X.; Chen, C.; Hu, W.; Ding, A.; Dixu; Zhou, X., Sorption of 243Am(III) to Multiwall Carbon Nanotubes. Environmental Science and Technology 2005, 39, 2856-2860.
    Yu, M.-F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 2000, 28, 637-640.
    Yudasaka, M.; Ajima, K.; Suenaga, K.; Ichihashi, T.; Hashimoto, A.; Iijima, S., Nano-Extraction and Nano-Condensation for C60 Incorporation Into Single-Wall Carbon Nanotubes in Liquid Phases. Chemical Physics Letters 2003, 380, 42-46.
    Yuzvinsky, T. D.; Han, W.-Q.; Fuhrer, M. S., Rotational Actuators Based on Carbon Nanotubes. Nature 2003, 424, 408-410.
    高濂; 孫靜; 劉陽橋, 奈米粉體的分散及表面改姓. 五南圖書: 2005; p 198-203.
    楊育峰, 奈米碳管接枝幾丁聚醣之物化研究. 碩士論文 國立雲林科技大學: 2003.
    蔡正國, 複合奈米碳管吸附水溶重金屬污染物之應用研究. 碩士論文 國立雲林科技大學: 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE