研究生: |
許嘉裕 Chia-Yu Hsu |
---|---|
論文名稱: |
建構掃描式曝光機台之覆蓋誤差模式與設計取樣策略之實證研究 Step-and-Scan Overlay Errors Modeling, Design of Sampling Strategies and the Validation via the Empirical Study |
指導教授: |
簡禎富
Chen-Fu Chien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 覆蓋誤差 、模式 、取樣策略 、步進且掃描式機台 、半導體製造管理 |
外文關鍵詞: | overlay error, modeling, sampling strategies, step-and-scan, semiconductor manufacturing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
覆蓋誤差精度是影響積體電路製造微影技術的關鍵準則之一,為了提高對準精度與解析度,現有曝光機台技術已由步進式曝光機改良為掃描式曝光機。隨著線寬的容差範圍緊縮,覆蓋誤差必須長期控制在穩定且合乎容忍的範圍內,補償覆蓋誤差一般是經由調整曝光機台之設定參數。然而,覆蓋誤差的精度受到所使用的覆蓋誤差模式影響。雖已有許多的理論模式被提出,但主要都是探討步進式曝光機之模式,只有少數的相關研究探討掃描式曝光機之模式。
本研究目的係回顧並改良掃描式曝光機既有之覆蓋誤差數學模式,並提出相對應模式之取樣策略,並針對曝光機台群組之問題,提出分群之法則。在誤差模式中,我們僅考慮可被校正,且實際尚可被半導體廠的機台量測與補償的誤差因子。驗證所提出之抽樣方法,由實際半導體廠所量得資料,比較不同抽樣策略下之補償效果。評估所提出覆蓋誤差模式之適切度,證明相對應模式取樣策略之效度。
關鍵字:覆蓋誤差、模式、取樣策略、步進且掃描式機台、半導體製造管理
Abstract
In order to meet the requirements of high resolution and alignment accuracy, the lithography equipments have been advanced from step-and-repeat system to step-and-scan system. As the tolerance of linewidths is becoming tight and slight, overlay errors must be controlled within the tolerance to maintain the yield. In particular, overlay errors can be compensated by modifying the corresponding equipment setup parameters. However, most of the existing studies focused on the step-and repeat system. Little research has been done to deal with overlay errors of the step-and-scan system.
This study aimed to construct the overlay error model for step-and-scan system and design the sampling strategy to measure and thus compensate the overlay errors. Furthermore, the proposed model and sampling strategy are validated by empirical studies conducted in a fab. We compared the proposed sampling strategy with alternative sampling strategies including the existing sampling strategies based on the model adequacy of R-squares and the model effectiveness of residual errors. The results demonstrated the practical viability of the proposed approach.
Keywords: overlay, modeling, sampling strategy step-and-scan, semiconductor manufacturing
References
Arnold, W. H. (1988), “Image placement differences between 1:1 projection aligners and 10:1 reduction wafer steppers”, Proceedings of SPIE: Optical Microlithography, Vol.394, pp.87-98.
Baliga, J. (1999), “Advanced process control: soon to be a must”, Semiconductor International, July, pp.76-88.
Bode, C. A., A. J. Toprac, R. D. Edwards and T. F. Edgar (2000), “Lithography overlay controller formulation”, Proceedings of SPIE: Process Control and Diagnostics, Vol.4182, pp.2-11.
Brink, M. A., C. G. M. de Mol and R. A. George (1988), “Matching performance for multiple wafer steppers using an advanced metrology procedure,” Proceedings SPIE: Integrated Circuit Metrology, Inspection, and Process Control II, Vol.921, pp.180-197.
Brink, M., H. Jasper, S. Slonaker, P. Wijnhoven and F. Klaassen (1996), “Step-and-scan and step-and-repeat, A technology comparison”, Proceedings of SPIE: Optical Microlithography IX, Vol.2726, pp.734-753.
Buckley, J.D. and C. Karatzas (1989), “Step and scan: A system overview of a new lithography tool”, Proceeding of SPIE: Optical/Laser Microlithography II, Vol.1088, pp.424-433.
Chen, X., M. Preil, M. Goff-Dussable and M. Maenhoudt (2001), “An automated method for overlay sample plan optimization based to spatial variation modeling,” Proceedings of SPIE: Metrology, Inspection, and Process Control for Microlithography XV, Vol.4344, pp.257-266.
Chien, C., K. Chang and C. Chen (2001), “Modeling overlay errors and sampling strategies to improve yield”, Journal of Chinese Institute of Industrial Engineers, Vol.18 (3), 95-102.
Chien, C., K. Chang and C. Chen (2003), “Design of a sampling strategy for measuring and compensating for overlay errors in semiconductor manufacturing,” International Journal of Production Research, Vol.41(11), pp.2547-2561.
Cronin, D. J. and G. M.Gallatin (1994), “Micrascan II overlay error analysis”, Proceedings of SPIE: Optical/Laser Microlithography VII, Vol. 2197, pp.932-942.
Fink, I. D., N.T. Sullivan and J. S. Lekas (1994), “Overlay sample plan optimization for the detection of higher order contributions to misalignment,” Proceedings of SPIE :Integrated Circuit Metrology, Inspection, and Process Control VIII, Vol.2196, pp.389-399.
Funk, M., K. Lally, R. Sundararajan (2002), “A Common APC Architecture for 200 & 300mm Etch”, Proceedings of SPIE: Design Process Integration, and Characterization for Microelectronics, Vol.4692, pp.155-161.
Hasan, T. F., S. U. Katzman and D. S. Perloff (1980), “Automated electrical measurements of registration errors in step-and-repeat optical lithography systems”, IEEE Transaction on electron devices, Vol.27 (12), pp.2304-2312.
Hong, J., J. Lee, J. Park, H. Cho and J. Moon (1999), “Optimization of sample plan for overlay and alignment accuracy improvement”, Jpn. J. Appl. Phys., Vol.38 pp.7164-7167.
International Technology Roadmap for Semiconductors: Metrology, 2003 edition.
Levinson, H. J., M. E. Preil, and P. J. Lord (1997), “Minimization of total overlay errors on product wafers using an advanced optimization scheme”, Proceedings of SPIE: Optical Microlithography X, Vol.3051, pp.362-373.
Lin, Z. and W. Wu (1999), “Multiple linear regression analysis of the overlay accuracy model”, IEEE Transaction on Semiconductor Manufacturing, Vol.12, pp.229-237.
MacMillen, D. and W. D. Ryden (1982), “Analysis of image field placement deviations of a 5× microlithographic reduction lens”, Proceedings of SPIE: Optical Microlithography-Technology, Vol.334, pp.78-89.
Montgomery, D. C., (2000), Design and Analysis of Experiments, 5th Edition, New York Wiley
National Technology Roadmap for Semiconductors: Technology Needs, 1997 Edition, Semiconductor Industry Association.
Pellegrini, J. C., Z. R. Hatab, M. Brsh and T. R. Glass (1999), “Super sparse overlay sampling plans: An evaluation of methods and algorithms for optimizing overlay quality control and metrology tool throughput”, Proceedings of SPIE: Metrology, Inspection, and Process Control for Microlithography XIII, Vol. 3677, pp.72-82.
Perloff, D. S. (1978), “A four-point electrical measurement technique for characterizing mask superposition errors on semiconductor wafers”, IEEE Journal of solid-state circuits, Vol.13 (4) pp.436-444.
Peski, C. K. (1982), “Minimizing pattern registration errors through wafer stepper matching techniques”, Solid State Technology, Vol.25 (5), pp.111-115.
Rangarajan, B., M. Templeton, L. Capodieci, R. Subramanian and A. Scranton (1998), “Optimal sampling strategies for sub-100nm overlay”, Proceedings of SPIE: Metrology, Inspection, and Process Control for Microlithography XII, Vol.3332, pp.348-359.
Schoot, J. V., F. Bornebroek, M. Suddendorf, M. Mulder, J. van der Spek, J. Stoeten and A. Hunter (1999), “0.7 NA DUV step & scan system for 150nm imaging with improved overlay”, Proceedings of SPIE: Optical Microlithography XII, Vol.3679, pp.448-463.
Sewell H. (1994), “Step and scan: the maturing technology”, Proceedings SPIE: Optical/Laser Microlithography VIII, Vol.2440, pp.49-60.
Zwart, G.., M. van den Brink, R. George, D. Satriasaputra, J. Baselmans, H. Butler, J. van Schoot and J. de Klerk (1997), “Performance of a step and scan system for DUV lithography”, Proceedings of SPIE: Optical Microlithography X, Vol.3051, pp.817-829.