研究生: |
徐惠纓 Shiu, Hui-Ying |
---|---|
論文名稱: |
以溶液方式合成之氧化物奈米結構製作異質介面太陽能電池 Solution-processed All-oxide Nanostructures for Heterojunction Solar Cells |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 噴塗技術 、太陽能電池 、氧化物 、鈷摻雜二氧化錫 、氧化亞銅 |
外文關鍵詞: | spray, solar cell, oxide, Co-doped SnO2, Cu2O |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究重點在於利用溶液方式合成 p型氧化亞銅 (Cu2O) 與鈷摻雜之 n型二氧化錫 (Sn1-xCoxO2) 奈米結構氧化物製作異質介面太陽能電池,以期達到全太陽光光譜吸收之目的,且藉由噴塗技術 (spray technology) 與熱壓系統製作太陽能電池,達到低成本與大面積製作等優勢。
本研究將嘗試藉由調整摻雜不同重量百分比之硫酸鈷水合物、氯化錫水合物濃度和pH值,製備出以低溫 (□ 90 □C) 濕式化學法成長的Sn1-xCoxO2顆粒結構與Cu2O奈米結構,並利用此兩種無毒且地球蘊藏豐富的元素分別作為n型與p型半導體材料,並結合噴塗技術與熱壓製程成功製作出n-Sn1-xCoxO2/p-Cu2O奈米結構異質介面太陽能電池。
另一方面,本研究亦分析氧化物之光學特性,得知 n-Sn1-xCoxO2顆粒太陽光光譜吸收波段為700 nm至1400 nm,此與吸收波段300 nm至800 nm之p-Cu2O結合成功達到可預期之太陽光光譜全波段吸收之目的。
在本研究中利用噴塗技術與熱壓系統製作之n-Sn1-xCoxO2/p-Cu2O奈米結構異質介面太陽能電池,隨著不同硫酸鈷摻雜重量百分比逐步0 wt%, 0.025 wt% 到 0.075 wt% 遞增,其最高能量轉換效率亦為線性增加,分別為7□10-4%、0.43%與1.2%,目前最高能量轉換效率為以n-Sn0.86Co0.14O2/p-Cu2O 製作之太陽能電池,其為開路電壓 (open-circuit voltage, Voc) Voc= 2.325 V,短路電流 (short-circuit current, Jsc) Jsc =1.426 mA/cm2,填充因子 (fill factor, FF) FF =36%,能量轉換效率 (power conversion efficiency, PCE) PCE =1.2%。
相較目前文獻報導,以溶液方式製作之氧化物奈米結構太陽能電池之最高能量轉換效率為0.88%,本研究可成功的製作n-Sn0.86Co0.14O2/p-Cu2O氧化物奈米結構異質介面太陽能電池之最高能量轉換效率為1.2%。
[1] J. Goldemberg, Ethanol for A Sustainable Energy Future, Science, 315, 2007, 808-810
[2] M. I. Hoffert, K. Caldeira, A. K. Jain, E. F. Haites, L. D. Danny Harveyk, S. D. Potter, M. E. Schlesinger, S. H. Schneider, R. G.WattsI, T. L. Wigley and D. J. Wuebbles, Energy Implications of Future Stabilization of Atmospheric CO2 Content, Letter to Nature, 395, 1998, 881
[3] Energy Information Administration, International Energy Outlook 2010 – Highlights, 2010, 1-8
[4] Peter Lang, Emission Cuts Realities –Electricity Generation, 2010, 1-32
[5] G. F. Brown and J. Wu, Third Generation Photovoltaics, Laser & Photon. Rev, 3, 2009, 294-405
[6] N. S. Lewis, Toward Cost-Effective Solar Energy Use, Science, 315, 2007, 798-801
[7] D. M. Chapin, C. S. Fuller and G. L Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., 25, 1954, 676-677
[8] J. Zhao, A. Wang and M. A. Green, 24.5% Efficiency Silicon PERT cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates, Progress in Photovoltaics, 7, 1999, 471–474
[9] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Solar Cell Efficiency Tables (version 35), Prog. Photovolt: Res. Appl., 18, 2010, 144-150
[10] G. Conibeer, Third-generation Photovoltaics, Materialstoday, 10, 2007, 42-50
[11] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Novel 19.8% Efficient ‘‘Honeycomb’’ Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells, Applied Physics Letters , 73, 1998, 1991–1993
[12] O. Schultz, S. W. Glunz and G. P. Willeke, Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency, Progress in Photovoltaics: Research and Applications 12, 2004, 553–558
[13] R. B. Bergmann, T. J. Rinke, C. Berge, J. Schmidt and J. H. Werner. Advances in Monocrystalline Si Thin-film Solar Cells by Layer Transfer, Technical Digest, PVSEC-12, Chefju Island, Korea, June, 2001, 11–15.
[14] M. J. Keevers, T. L. Young, U. Schubert and M. A. Green, 10% efficient CSG Minimodules. 22nd European Photovoltaic Solar Energy Conference, Milan, September, 2007
[15] G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben and J. J. Schermer, 26.1% Thin-film GaAs Solar Cell Using Epitaxial Lift-off, Solar Energy Materials and Solar Cells, 93, 2009, 1488–1491
[16] R. Venkatasubramanian, B. C. O’Quinn, J. S. Hills, P. R. Sharps, M. J. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel and B. Keyes, 18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-grade Polycrystalline Ge Substrate, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31–36
[17] C. J. Keavney, V. E. Haven and S. M. Vernon. Emitter Structures in MOCVD InP Solar Cells, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, 141–144
[18] I. Repins, M. Contreras, Y. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. Mccandless and R. Noufi, Characterization of 19.9%-efficienct CIGS Absorbers, IEEE Photovoltaics Specialists Conference Record, 2008, 33
[19] J. Kessler, M. Bodegard, J. Hedstrom and L. Stolt. New World Record Cu(In,Ga) Se2 Based Mini-module:16.6%. Proceedings of 16th European Photovoltaic Solar Energy Conference, Glasgow, 2000, 2057–2060
[20] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert , S. Asher,D. H. Levi and P. Sheldon. 16.5%-efficient CdS/CdTe Polycrystalline Thin-film Solar Cell. Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001, 995–1000.
[21] J. Meier, J. Sitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty and A. Shah. Potential of Amorphous and Microcrystalline Silicon Solar Cells. Thin Solid Films, 451–452, 2004, 518–524.
[22] K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto and A. Nakajima, Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature. MRS Spring Meeting, San Francisco April 1998
[23] Y. Chiba, A. Islam, K. Kakutani, R. Komiya, N. Koide and L. Han. High Efficiency Dye Sensitized Solar Cells. Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, October 2005, 665–666.
[24] M. Morooka and K. Noda. Development of Dye-sensitized Solar Cells and Next Generation Energy Devices, 88th Spring Meeting of The Chemical Society of Japan,Tokyo, March 2008.
[25] M. Ohmori, T. Takamoto, E. Ikeda and H. Kurita. High Efficiency InGaP/GaAs Tandem Solar Cells. Tech. Digest, International PVSEC-9, Miyasaki, Japan, November 1996, 525–528.
[26] K. Mitchell, C. Eberspacher, J. Ermer and D. Pier. Single and Tandem Junction CuInSe2 Cell and Module Technology. Conference Record, 20th IEEE Photovoltaic Specialists Conference, Las Vegas, September 1988, 1384–1389.
[27] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, K. Yamamoto. High Efficiency Thin Film Silicon Hybrid Solar Cell Module on Im2-class Large Area Substrate. Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003, 1566–1569.
[28] A. Sha, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner , Photovoltaic Technology: The Case for Thin-Film Solar Cells, Science, 285, 1999, 692-698
[29] M. A. Green, Solar Cells, 1982, 62-84
[30] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering , 2003, 61-111
[31] N. Nijegorodov and P. V. C. Luhanga, Air Mass" Analytical and Empirical Treatment ; an Improved Formula for Air Mass, Renewable Energy, 7, 1996, 57-65
[32] M. A. Green, Third Generation Photovoltaics:Ultra-High Conversion Efficiency at Low Cost, Prog. Photovolt: Res. 9, 2001, 123-135
[33] B. D. Yuhas and P. Yang, Nanowire-Based All-Oxide Solar Cells, J. Am. Chem. Soc., 131, 2009, 3756-3761
[34] M. Alberto, S. Enrico, S. Francesca, T. Mario and V. Rajaraman, Heterojunction Solar Cell with 2% Efficiency Based on a Cu2O Substrate, Applied Physics Letters 88, 2006, 163502-163503
[35] T. Minami, T. Miyata, K. Ihara, Y. Minamino and S. Tsukada, Effect of ZnO Film Deposition Methods on the Photovoltaic Properties of ZnO–Cu2O Heterojunction Devices, Thin Solid Films, 494, 2006, 47-52
[36] S. S. Jeonga, A. Mittiga, E. Salzaa, A. Mascia and S. Passerini, Electrodeposited ZnO/Cu2O Heterojunction Solar Cells, Electrochimica Acta, 53, 2008, 2226-2231
[37] J. Katayama1, K. Ito1, M. Matsuoka1 and J. Tamaki1, Performance of Cu2O/ZnO Solar Cell Prepared by Two-step Electrodeposition, Journal of Applied Electrochemistry, 34, 2004, 687-692
[38] J. Cui and U. J. Gibson, A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells, J. Phys. Chem. C114, 2010, 6408–6412
[39] P. W. Baumeister , Optical Absorption of Cuprous Oxide, Phys. Rev., 121, 1961, 359-362
[40] A. E. Rakrsiza and J. Varghese, Optical Absorption Coefficient and Thickness Measurement of Electrodeposited Films of Cu2O, Phys. Stat. Sol. (a) , 101, 1987, 479-486
[41] H.d Martens, J. P. Nielsen, and S. B. Engelsen, Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures, Anal. Chem.,75, 2003, 394-404
[42] M. Hernández-Vélez, Nanowires and 1D Arrays Fabrication: An Overview, Thin Solid Films, 495, 2006, 51
[43] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater. 15, 2003, 353-389
[44] L. Jiang, G. Sun, Z. Zhou, S. Sun,Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou and Q. Xin, Size-Controllable Synthesis of Monodispersed SnO2 Nanoparticles and Application in Electrocatalysts, J. Phys. Chem. B 109, 2005, 8774-8778
[45] J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin and K. M. Reddy, Relationship Between the Structural and Magnetic Properties of Co-doped SnO2 Nanoparticles, Phys. Rev. B, 72, 2005, 075203: 1-7
[46] A. Bouaine, G. Schmerber, C. Ulhaq-Bouillet, S. Colis and A. Dinia, Structural, Optical, and Magnetic Properties of Co-doped SnO2 Powders Synthesized by the Coprecipitation Technique, J. Phys. Chem. C, 111, 2007, 2924-2928
[47] JCPDS Detabase
[48] X. Zhang, X. M. Li, T. L. Chen, J. M. Bian and C. Y. Zhang. Structural and Optical Properties of Zn1-xMgxO Thin Films Deposited by Ultrasonic Spray Pyrolysis, Thin Solid Films, 492, 2005, 248-252
[49] G. K. Mor, O. K. Varghese, M. Paulose , K. G. Ong, C. A. Grimes, Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements, Thin Solid Film, 496, 2006, 46-48
[50] Y. Luo, S. Li, Q. Ren, J. Liu, L. Xing, Y. Wang, Y. Yu, Z. Jia, and J. Li, Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route, Crystal Growth & Design, 7, 2007, 87-92
[51] P. M. Jones, J. A. May, J. B. Reitz, and E. I. Solomon, Electron Spectroscopic Studies of CH3OH Chemisorption on Cu2O and ZnO Single-Crystal Surfaces: Methoxide Bonding and Reactivity Related to Methanol Synthesis, J. Am. Chem. Soc., 120, 1998, 1506-1516