簡易檢索 / 詳目顯示

研究生: 黃逸弘
Huang,Yi-Hong
論文名稱: 燃料電池薄膜電極塗佈與結構工程
Structure Engineering of Catalyst Layers on Fuel Cell Membrane Electrodes
指導教授: 潘詠庭
Pan, Yung-Tin
口試委員: 胡啟章
Hu, Chi-Chang
周鶴修
Chou, Ho-Hsiu
陳翰儀
Chen, Han-Yi
王冠文
Wang, Kuan-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 結構工程薄膜電極燃料電池
外文關鍵詞: Structure Engineering, Membrane Electrode Assembly, Fuel Cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氧燃料電池薄膜電極(Membrane Electrode Assembly, MEA)的觸媒層是同時發生反應物質傳、電化學反應、排水的場所,因此觸媒層是決定薄膜電極性能的重要核心。由於陰極的電化學反應產物會有水,因此陰極的觸媒層結構不僅需要讓氧氣能順利擴散至觸媒層與觸媒產生反應,還得具備適度的排水功能避免觸媒層因水淹導致微孔被堵塞,造成氧氣擴散不進去,導致高電流密度下的性能損失。多孔且空間空隙大的觸媒層結構被視為一個可以同時能讓反應物氣體順利擴散至觸媒層內部也能同時將反應的水及時排出的陰極觸媒層結構。
    本研究利用超音波噴塗機進行觸媒層塗佈,透過調整載台的真空度(500mmHg、600mmHg、650mmHg)、噴嘴頻率(48kHz、120kHz)以及調控加熱台溫度(60 °C - 110 °C)來獲得不同的多孔觸媒層結構。載台的真空度控制的是薄膜形變的能力,觸媒沉積的位置隨著薄膜皺褶程度不同而形成高低起伏的觸媒層結構,使用較低真空度的500以及600mmHg薄膜電極在高電流密度表現較高真空度的650mmHg薄膜電極高100Ma/cm2。噴嘴頻率所控制的是噴出液滴的大小,使用48kHz頻率的噴嘴所獲得的孔洞直徑約10-35μm,而120kHz頻率的噴嘴獲得的孔洞為3-8μm,因此觸媒層的堆疊結構與孔徑分布大小會截然不同,使用48kHz頻率噴嘴的薄膜電極會獲得起伏程度較高的觸媒層結構,使用120kHz噴嘴的薄膜電極則有明顯白金使用率降低的問題。加熱台的溫度控制的是液滴揮發速度。在加熱台60 °C以及70 °C的情況下,由於揮發速度慢在噴塗初期會形成較連續的液膜,導致乾燥後形成孔隙度較低的觸媒層。80°C -110°C時則在初期即因咖啡圈效應(Coffee-ring Effect)而堆疊形成具孔洞的觸媒層。最終的孔徑分析,60 °C及80°C分別獲得12μm及16μm的平均直徑。在燃料電池單電池測試條件下,80 °C製作的MEA可以獲得1520mA的極限電流密度,而在60°C的MEA僅獲得1350mA的極限電流密度。
    本研究通過對薄膜電極內部結構優化的工程(真空載台、噴嘴、加熱載台),最大限度地減少傳質阻力,從而為觸媒層中發生的電化學反應找出最佳操作條件。


    The catalyst layer of the membrane electrode assemble (MEA) is a place where the multiphase transport process, electrochemical reactions, and water repelling occur simultaneously, therefore the structure of the catalyst layer is important core for the performance of the MEA. Since the electrochemical reaction product of the cathode is water, the catalyst layer structure of the cathode not only needs to allow oxygen to diffuse into the catalyst layer and react with the catalyst, but also has the drainage function to avoid flooding of the catalyst layer, resulting in performance loss under high current density. Therefore, the porous catalyst layer and void structure is regarded as a catalyst layer structure that can diffuse the reactant gas into the catalyst layer and repel the water balance environment. In this work, an ultrasonic spray coater was used to coat the catalyst layer.
    To obtain different porous and void catalyst layer structures, select the different vacuum value plate (500,600,650mmHg), nozzle frequency (48, 120 kHz) and temperature of the heating plate (60°C-110°C). Vacuum plate controls the membrane deformation when touch with solvent. Deposition will follow the wrinkle of membrane, and form the rough catalyst layer. During high current density area ,500-MEA and 600-MEA is 100mA/cm2 larger than 650-MEA。The nozzle frequency controls the size of the droplets ejected. The diameter of the pore obtained by the nozzle with the 48kHz frequency is about 10-35μm, and the pore obtained by the nozzle with the frequency of 120kHz is 3-8μm, so the stacked structure and porosity of the catalyst layer will be very different. The 48kHz-MEA would get rough catalyst layer and 120kHz-MEA would get uniform catalyst layer and another issue is low Pt utilization. The heating plate temperature controls the evaporation rate of the droplets. At 60°C and 70°C MEA, a more continuous liquid film will be formed at the initial stage of spraying due to the slow evaporation rate, resulting in the formation of a less porous catalyst after drying. At 80°C -110°C MEA, there are pores caused by the coffee-ring effect in the initial stage. The diameter of the pore obtain by 60°C-MEA and 80°C-MEA is 12μm and 16μm. During high current density area , 60°C -MEA and 80°C -MEA shows that 1520mA/cm2 and 1350mA/cm2 .
    In this study, with optimized engineering of the electrode structure, the mass transfer resistances can be minimized to give the best operating conditions for electrochemical reactions to occur in the catalyst layers.

    摘要 I Abstract III 誌謝辭 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 簡介 1 1-1研究背景 1 1-2聚合物電解質燃料電池Polymer Electrolyte Membrane Fuel Cell (PEMFC) 3 1-2-1薄膜電極性能 4 1-3薄膜電極製作方式 6 1-3-1塗佈方式 8 1-4觸媒層結構對於薄膜電極的影響 11 第二章 文獻回顧 12 2-1 Ionomer 12 2-1-1 Ionomer含量於觸媒層中對於質子及氣體傳輸的影響 14 2-2-2 碳載表面性質改質 20 2-3溶劑對於漿料的影響 23 2-4 觸媒層與觸媒層/薄膜的介面工程對電池性能的影響 26 2-4-1不同比例溶劑之觸媒層對燃料電池性能的影響 27 2-4-2 Ionomer與白金含量梯度變化對觸媒層的影響 29 2-4-3 具有序性的觸媒層結構 31 2-5引入孔洞劑材料在觸媒層 33 2-6 乾燥手法對於觸媒層結構的影響 35 2-6-1 不同塗佈手段乾燥後的觸媒層微觀結構 37 2-7研究動機 38 第三章 實驗方法與儀器 39 3-1 實驗藥品 39 3-2 實驗儀器 41 3-3分析儀器 42 3-4實驗步驟 43 3-5電化學測試 46 3-5-1電化學測試流程 46 第四章 結果與討論 48 4-1 薄膜電極組裝系統優化 49 4-2-1 薄膜真空度對於薄膜型變的結構影響 56 4-2-1-1不同載台真空度MEA的電化學測試 59 4-2-2 噴嘴控制的液滴大小對於觸媒層的形成結構 61 4-2-2-1 不同頻率噴嘴MEA之電化學結果 64 4-2-3 調控載台溫度影響揮發速率而形成的觸媒層結構 66 4-2-3-1塗佈溫度之電化學測試 69 第五章 結論 71 第六章 未來工作 72 第七章 文獻 74 第八章 附錄 81

    1. Wang, W.; Chen, S.; Li, J.; Wang, W., Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy 2015, 40 (13), 4649-4658.
    2. Shahgaldi, S.; Alaefour, I.; Li, X., Impact of manufacturing processes on proton exchange membrane fuel cell performance. Applied Energy 2018, 225, 1022-1032.
    3. Talukdar, K.; Delgado, S.; Lagarteira, T.; Gazdzicki, P.; Friedrich, K. A., Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers. Journal of Power Sources 2019, 427, 309-317.
    4. Gomes Bezerra, C. A.; Deiner, L. J.; Tremiliosi-Filho, G., Unexpected Performance of Inkjet‐Printed Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells. Advanced Engineering Materials 2019, 21 (11).
    5. Chen, M.; Zhao, C.; Sun, F.; Fan, J.; Li, H.; Wang, H., Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation 2020, 5.
    6. Lee, D.; Hwang, S., Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs. International Journal of Hydrogen Energy 2008, 33 (11), 2790-2794.
    7. Karan, K., PEFC catalyst layer: Recent advances in materials, microstructural characterization, and modeling. Current Opinion in Electrochemistry 2017, 5 (1), 27-35.
    8. Kusoglu, A.; Weber, A. Z., New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem Rev 2017, 117 (3), 987-1104.
    9. Wang, H.; Wang, R.; Sui, S.; Sun, T.; Yan, Y.; Du, S., Cathode Design for Proton Exchange Membrane Fuel Cells in Automotive Applications. Automotive Innovation 2021, 4 (2), 144-164.
    10. Barbosa, R.; Escobar, B.; Cano, U.; Ortegon, J.; Sanchez, V. M., Multiscale relationship of electronic and ionic conduction efficiency in a PEMFC catalyst layer. International Journal of Hydrogen Energy 2016, 41 (42), 19399-19407.
    11. Shahgaldi, S.; Alaefour, I.; Li, X., The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability. Applied Energy 2018, 217, 295-302.
    12. Dru, D.; Baranton, S.; Bigarré, J.; Buvat, P.; Coutanceau, C., Fluorine-Free Pt Nanocomposites for Three-Phase Interfaces in Fuel Cell Electrodes. ACS Catalysis 2016, 6 (10), 6993-7001.
    13. Garsany, Y.; Atkinson, R. W.; Sassin, M. B.; Hjelm, R. M. E.; Gould, B. D.; Swider-Lyons, K. E., Improving PEMFC Performance Using Short-Side-Chain Low-Equivalent-Weight PFSA Ionomer in the Cathode Catalyst Layer. Journal of The Electrochemical Society 2018, 165 (5), F381-F391.
    14. Yakovlev, Y. V.; Lobko, Y. V.; Vorokhta, M.; Nováková, J.; Mazur, M.; Matolínová, I.; Matolín, V., Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. Journal of Power Sources 2021, 490.
    15. Yu, H.; Roller, J. M.; Mustain, W. E.; Maric, R., Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. Journal of Power Sources 2015, 283, 84-94.
    16. Soboleva, T.; Zhao, X.; Malek, K.; Xie, Z.; Navessin, T.; Holdcroft, S., On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces 2010, 2 (2), 375-84.
    17. Wang, M.; Park, J. H.; Kabir, S.; Neyerlin, K. C.; Kariuki, N. N.; Lv, H.; Stamenkovic, V. R.; Myers, D. J.; Ulsh, M.; Mauger, S. A., Impact of Catalyst Ink Dispersing Methodology on Fuel Cell Performance Using in-Situ X-ray Scattering. ACS Applied Energy Materials 2019, 2 (9), 6417-6427.
    18. Kurihara, Y.; Mabuchi, T.; Tokumasu, T., Molecular Analysis of Structural Effect of Ionomer on Oxygen Permeation Properties in PEFC. Journal of The Electrochemical Society 2017, 164 (6), F628-F637.
    19. Baker, D. R. C. C. A.; Neyerlin, K. C.; Murph, M. W., Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J. Electrochem. Soc. 2009, 156.
    20. Holdcroft, S., Fuel Cell Catalyst Layers: A Polymer Science Perspective. Chemistry of Materials 2013, 26 (1), 381-393.
    21. Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H. N.; Hubner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P., Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat Mater 2020, 19 (1), 77-85.
    22. Yang, F.; Xin, L.; Uzunoglu, A.; Qiu, Y.; Stanciu, L.; Ilavsky, J.; Li, W.; Xie, J., Investigation of the Interaction between Nafion Ionomer and Surface Functionalized Carbon Black Using Both Ultrasmall Angle X-ray Scattering and Cryo-TEM. ACS Appl Mater Interfaces 2017, 9 (7), 6530-6538.
    23. Xu, F.; Zhang, H.; Ilavsky, J.; Stanciu, L.; Ho, D.; Justice, M. J.; Petrache, H. I.; Xie, J., Investigation of a catalyst ink dispersion using both ultra-small-angle X-ray scattering and cryogenic TEM. Langmuir 2010, 26 (24), 19199-208.
    24. Woo, S.; Lee, S.; Taning, A. Z.; Yang, T.-H.; Park, S.-H.; Yim, S.-D., Current understanding of catalyst/ionomer interfacial structure and phenomena affecting the oxygen reduction reaction in cathode catalyst layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry 2020, 21, 289-296.
    25. Yamada, H.; Kato, H.; Kodama, K., Cell Performance and Durability of Pt/C Cathode Catalyst Covered by Dopamine Derived Carbon Thin Layer for Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society 2020, 167 (8).
    26. Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W.; Thompson, L.; Kongkanand, A., Boosting Fuel Cell Performance with Accessible Carbon Mesopores. ACS Energy Letters 2018, 3 (3), 618-621.
    27. Orfanidi, A., The key to high performance low Pt loaded electrodes. J. Electrochem. Soc. 2017, 164.
    28. Lee, J.; Liu, H.; George, M. G.; Banerjee, R.; Ge, N.; Chevalier, S.; Kotaka, T.; Tabuchi, Y.; Bazylak, A., Microporous layer to carbon fibre substrate interface impact on polymer electrolyte membrane fuel cell performance. Journal of Power Sources 2019, 422, 113-121.
    29. Wu, H.-W., A review of recent development: Transport and performance modeling of PEM fuel cells. Applied Energy 2016, 165, 81-106.
    30. Song, Y.; Wei, Y.; Xu, H.; Williams, M.; Liu, Y.; Bonville, L. J.; Russell Kunz, H.; Fenton, J. M., Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate. Journal of Power Sources 2005, 141 (2), 250-257.
    31. Feng-Yuan Zhang , In Situ Characterization of the Catalyst layer in a Polymer Electrolyte Membrane Fuel Cell . J.Electrochem Soc,2007, 154.
    32. Suzuki, T.; Tsushima, S.; Hirai, S., Effects of Nafion® ionomer and carbon particles on structure formation in a proton-exchange membrane fuel cell catalyst layer fabricated by the decal-transfer method. International Journal of Hydrogen Energy 2011, 36 (19), 12361-12369.
    33. Salari, S.; Stumper, J.; Bahrami, M., Direct measurement and modeling relative gas diffusivity of PEMFC catalyst layers: The effect of ionomer to carbon ratio, operating temperature, porosity, and pore size distribution. International Journal of Hydrogen Energy 2018, 43 (34), 16704-16718.
    34. Taghiabadi, M. M.; Zhiani, M.; Shafiei, M., Influence of the Cathode Catalyst Layer Void Volume on the Short-term and Long-term Performance of PEM Fuel Cell. Fuel Cells 2018, 18 (6), 731-741.
    35. Chong, L.; Wen, J.; Kubal, J.; Sen, F. G.; Zou, J.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W.; Liu, D. J.,Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281
    36. Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W.; Xia, B. Y. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019,366, 850–856
    1-5
    37. Zhao, G.; Zhang, Y.; Shi, N.; Liu, Z.; Zhang, X.; Wu, M.; Pan, C.; Liu, H.; Li, L.; Wang, Z. L., Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302-310.
    38. Pan, L.; Ott, S.; Dionigi, F.; Strasser, P., Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Current Opinion in Electrochemistry 2019, 18, 61-71.
    39. Du, L.; Prabhakaran, V.; Xie, X.; Park, S.; Wang, Y.; Shao, Y., Low-PGM and PGM-Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions. Adv Mater 2021, 33 (6), e1908232.
    40. Jin, Y.; Yu, H.; Liang, X., Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries. Applied Physics Reviews 2021, 8 (3).
    41. Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M.; Mukundan, R.; Owejan, J. P.; Pharoah, J. G.; Secanell, M.; Zenyuk, I. V., A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells. Journal of The Electrochemical Society 2014, 161 (12), F1254-F1299.
    42. Reier, T.; Oezaslan, M.; Strasser, P., Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis 2012, 2 (8), 1765-1772.
    43. Fouzaï, I.; Gentil, S.; Bassetto, V. C.; Silva, W. O.; Maher, R.; Girault, H. H., Catalytic layer-membrane electrode assembly methods for optimum triple phase boundaries and fuel cell performances. Journal of Materials Chemistry A 2021, 9 (18), 11096-11123.
    44. Millington, B.; Whipple, V.; Pollet, B. G., A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique. Journal of Power Sources 2011, 196 (20), 8500-8508.
    45. Park, I.-S.; Li, W.; Manthiram, A., Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells. Journal of Power Sources 2010, 195 (20), 7078-7082.
    46. Shukla, S.; Domican, K.; Karan, K.; Bhattacharjee, S.; Secanell, M., Analysis of Low Platinum Loading Thin Polymer Electrolyte Fuel Cell Electrodes Prepared by Inkjet Printing. Electrochimica Acta 2015, 156, 289-300.
    47. Debe, M. K., Tutorial on the Fundamental Characteristics and Practical Properties of Nanostructured Thin Film (NSTF) Catalysts. Journal of The Electrochemical Society 2013, 160 (6), F522-F534.

    48. X. Tang, M.J. Pikal, Design of freeze-drying processes for pharmaceuticals: practical advice, Pharm. Res,2004, 21, 191–200
    49. Varshosaz, J.; Eskandari, S.; Tabbakhian, M., Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydrate Polymers 2012, 88 (4), 1157-1163.
    50. Kim, O. H.; Cho, Y. H.; Kang, S. H.; Park, H. Y.; Kim, M.; Lim, J. W.; Chung, D. Y.; Lee, M. J.; Choe, H.; Sung, Y. E., Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nat Commun 2013, 4, 2473.
    51. Liang, L.; Wei, Y.; Zhang, X.; Chen, S.; Yu, F.; Tian, Z. Q.; Shen, P. K., 3D Model of an Order-Structured Cathode Catalyst Layer with Vertically Aligned Carbon Nanotubes for PEM Fuel Cells under the Water Flooding Condition. ACS Sustainable Chemistry & Engineering 2019, 8 (1), 695-705.
    52. Lin, R.; Wang, H.; Zhu, Y., Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density. Energy 2021, 221.
    53. Talukdar, K.; Ripan, M. A.; Jahnke, T.; Gazdzicki, P.; Morawietz, T.; Friedrich, K. A., Experimental and numerical study on catalyst layer of polymer electrolyte membrane fuel cell prepared with diverse drying methods. Journal of Power Sources 2020, 461.
    54. Zhao, J.; Shahgaldi, S.; Ozden, A.; Alaefour, I. E.; Li, X.; Hamdullahpur, F., Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells. Applied Energy 2019, 255.
    55. W. Mehnert, K. M€ader, Solid lipid nanoparticles: production, characterization and applications, Adv. Drug Deliv. Rev,2001,47 ,165–196
    56. Lee, E.; Kim, D.-H.; Pak, C., Effects of cathode catalyst layer fabrication parameters on the performance of high-temperature polymer electrolyte membrane fuel cells. Applied Surface Science 2020, 510.
    57. Hwang, D. S.; Park, C. H.; Yi, S. C.; Lee, Y. M., Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy 2011, 36 (16), 9876-9885.
    58. Hatzell, K. B.; Dixit, M. B.; Berlinger, S. A.; Weber, A. Z., Understanding inks for porous-electrode formation. J. Mater. Chem. A 2017, 5 (39), 20527-20533.
    59. Xie Z, Navessin T, Shi K, Chow R, Wang QP, et al. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells - II. Experimental study of the effect of Ionomer distribution. J Electrochem Soc 2005;152(6): A1171-A1179.
    60. Taylor AD, Kim EY, Humes VP, Kizuka J, Thompson LT. Inkjet printing of carbon supported platinum 3-D catalyst layers for use in fuel cells. J Power Sources 2007;171(1):101-6.
    61. Takahashi, S.; Mashio, T.; Horibe, N.; Akizuki, K.; Ohma, A., Analysis of the Microstructure Formation Process and Its Influence on the Performance of Polymer Electrolyte Fuel-Cell Catalyst Layers. ChemElectroChem 2015, 2 (10), 1560-1567.
    62. Breitwieser, M.; Klingele, M.; Vierrath, S.; Zengerle, R.; Thiele, S., Tailoring the Membrane-Electrode Interface in PEM Fuel Cells: A Review and Perspective on Novel Engineering Approaches. Advanced Energy Materials 2018, 8 (4)
    63. Choi, S.; Jeon, J.; Chae, J.; Yuk, S.; Lee, D.-H.; Doo, G.; Lee, D. W.; Hyun, J.; Kwen, J.; Choi, S. Q.; Kim, H.-T., Single-Step Fabrication of a Multiscale Porous Catalyst Layer by the Emulsion Template Method for Low Pt-Loaded Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials 2021, 4 (4), 4012-4020.
    64. Shen, J.; Xu, L.; Chang, H.; Tu, Z.; Chan, S. H., Partial flooding and its effect on the performance of a proton exchange membrane fuel cell. Energy Conversion and Management 2020, 207.
    65. Sassin, M. B.; Garsany, Y.; Atkinson, R. W.; Hjelm, R. M. E.; Swider-Lyons, K. E., Understanding the interplay between cathode catalyst layer porosity and thickness on transport limitations en route to high-performance PEMFCs. International Journal of Hydrogen Energy 2019, 44 (31), 16944-16955.
    66. Britton, B.; Holdcroft, S., The Control and Effect of Pore Size Distribution in AEMFC Catalyst Layers. Journal of The Electrochemical Society 2016, 163 (5), F353-F358.
    67. Wang, M.; Rome, G.; Medina, S.; Pfeilsticker, J. R.; Kang, Z.; Pylypenko, S.; Ulsh, M.; Bender, G., Impact of electrode thick spot irregularities on polymer electrolyte membrane fuel cell initial performance. Journal of Power Sources 2020, 466.
    68. Ke, Y.; Yuan, W.; Zhou, F.; Guo, W.; Li, J.; Zhuang, Z.; Su, X.; Lu, B.; Zhao, Y.; Tang, Y.; Chen, Y.; Song, J., A critical review on surface-pattern engineering of nafion membrane for fuel cell applications. Renewable and Sustainable Energy Reviews 2021, 145.
    69. Heinzmann, M.; Weber, A.; Ivers-Tiffée, E., Impedance modelling of porous electrode structures in polymer electrolyte membrane fuel cells. Journal of Power Sources 2019, 444.
    70. Ko, D.; Kwak, H. J.; Kim, M. H., The effects of water accumulation at the interface between gas diffusion layer and gas supplying channel on the water distribution in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy 2019, 44 (45), 24947-24953.
    71. Y. Park.; Y. Lim. ; J. Lee., "n-Propanol aqueous solution shows nonlinearity in liquid level depending on water proportion," 2015 15th International Conference on Control, Automation and Systems (ICCAS), 2015, pp. 258-260

    QR CODE