簡易檢索 / 詳目顯示

研究生: 張宏安
論文名稱: 大位移梳狀致動器及控制系統設計
Comb Drive Actuator and Control System Design for a Large Displacement
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 56
中文關鍵詞: 微機電梳狀致動器
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在微致動器中尋找有效的致動方式一直是研究重點,其中以靜電
    力作為驅動方式的梳狀致動器,由於控制容易以及製程與積體電路相
    容等優點,因此最為人們所青睞。但是由於製程本身的參數誤差,使
    得製作過程無法做出完全對稱的電極,導致當致動器行進時,隨著電
    極間相互重疊面積的增加,所產生側向不平衡靜電力也就越來越大。
    最後達到一臨界電壓時,可動電極與固定電極相互接觸而短路,致動
    本論文改良傳統梳狀致動器驅動端的電極結構,藉由控制補償電
    極的電壓,直接針對限制位移量的發生原因去做改善,以增加致動器
    所能行進的最大位移量,並利用CMOS 感測電路擷取所需的迴授控
    制訊號,以完成整個致動器的系統整合。


    第一章 緒論 1.1 研究背景與動機 1.2 文獻回顧 1.3 本文大綱 第二章 系統架構與介面電路設計 2.1 梳狀致動器元件分析 2.1.1 梳狀致動器最大行進位移量分析 2.1.2 梳狀致動器改良 2.1.3 補償電極靜電力分析 2.1.4 元件設計與製程 2.2 介面電路設計 2.2.1 運算放大器電路設計 2.2.2 電容感測電路設計 2.2.3 訊號處理電路設計 2.3 系統架構 2.4 結論 第三章 結果與討論 3.1 側向不平衡靜電力補償模擬 3.2 致動器共振模態模擬 3.3 致動器製程結果 3.4 致動器量測結果 3.4.1 致動器大位移驗證 3.4.2 致動器共振頻率量測 3.5 控制器設計 3.6 電路模擬及量測結果 3.6.1 運算放大器設計之模擬結果 3.6.2 電容感測電路設計之模擬結果 3.6.3 電容感測電路設計之實驗結果 3.7 結論 第四章 結論與未來工作 參考文獻

    [1] R. Feynman, “There’s plenty of room at the bottom,” Journal of Microelectromechanical Systems, Vol. 1, No. 1, pp. 60-66, Mar. 1992.
    [2] W. C. Tang, T. H. Nguyen and R. T. Howe “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators, Vol. 20, No. 1, pp. 25-32, Nov. 1989.
    [3] C. J. Kim, A. P. Pisano and R. S. Muller, “Silicon-processed overhanging microgripper,” Journal of Microelectromechanical Systems, Vol. 1, No. 1, pp. 31-36, Mar. 1992.
    [4] V. P. Jaecklin, C. Linder, N. F. de Rooij, J. M. Moret, R. Bischof and F. Rudolf, “Novel polysilicon comb actuators for xy-stages,” Proceedings of IEEE Micro Electro Mechanical System Workshop, pp. 147-149, Feb. 1992.
    [5] C. C. Chen, C. K. Lee and Y. J. Lai, “Novel VOA using in-plane reflective micromirror and off-axis light attenuation,” IEEE Communications Magazine, Vol. 41, No. 4, pp. s16-s20, Aug. 2003.
    [6] D. Y. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 10, No. 3, pp. 505-513, May 2004.
    [7] “微機電系統技術與應用”, 國科會精密儀器發展中心, p. 615, 2003.
    [8] T. Hirano, T. Furuhata, K. J. Gabriel and H. Fujita, “Design, fabrication, and operation of submicron gap comb-drive microactuators,” Journal of Microelectromechanical Systems, Vol. 1, No. 1, pp. 52-59, Mar. 1992.
    [9] R. Legtenberg, A. W. Groeneveld and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, Vol. 6, No. 3, pp. 320-329, Sep. 1996.
    [10] G. Zhou and P. Dowd, “Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators,” Journal of Micromechanics and Microengineering, Vol. 13, No. 2, pp. 178-183, Mar. 2003.
    [11] C. L. Ku, R. Chen and Y. C. Chen, “Design and Analysis of a Comb-drive Actuator for Large Displacement,” American Society of Mechanical Engineers, InterPACK '05, San Francisco, CA, USA, Jul. 2005.
    [12] N. Karlsson, “A study of a high-resolution linear circuit for capacitive sensors,” IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 6, pp. 1122-1124, Dec. 1999.
    [13] D. M. G. Preethichandra and K. Shida, “A simple interface circuit to measure very small capacitance changes in capacitive sensors,” IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 6, pp. 1583-1586, 2001.
    [14] P. Holmberg, “Automatic balancing of linear AC bridge circuits for capacitive sensor elements,” IEEE Transactions on Instrumentation and Measurement, Vol. 44, No. 3, pp. 803-805, Jun. 1995.
    [15] W. Q. Yang, “A self-balancing circuit to measure capacitance and loss conductance for industrial transducer applications,” IEEE Transactions on Instrumentation and Measurement, Vol. 45, No. 6, pp. 955-958, Dec. 1996.
    [16] D. Marioli, E. Sardini and A. Taroni, “Measurement of small capacitance variations,” Conference on Precision Electromagnetic Measurements, pp. 22-23, Jun. 1990.
    [17] J. C. Lotters, W. Olthuis and P. H. Veltink, “A sensitive differential capacitance to voltage converter for sensor applications,” IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 1, pp. 89-96, Feb. 1999.
    [18] D. Johns and K. Martin, “Analog integrated circuit design,” John Wiley & Sons, 1997.
    [19] C. C. Chen, “Implementation of CMOS sensing circuits integrated with a piezoelectric free fall micro sensor,” Master Thesis, Institute of Applied Mechanics College of Engineering, National Taiwan University, Jul. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE