簡易檢索 / 詳目顯示

研究生: 蘇庭鋒
Ting-Feng Su
論文名稱: 柱及殼結構之常溫潛變挫屈行為
Creep Buckling of Column and Shell Structures at Room Temperature
指導教授: 葉孟考
Meng-Kao Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 潛變挫屈有限單元分析臨界時間
外文關鍵詞: Creep buckling, Finite element analysis, Critical time
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要在研究柱及殼結構在常溫下的潛變挫屈行為。在實驗方面,先以單軸拉伸實驗測量材料的常溫機械性質,並設計一組設備測量材料在不同應力作用下的潛變行為,再以應變硬化方程式(Strain-hardening equation)與修正型時間硬化方程式(Modified time-hardening equation)描述材料的潛變行為。在分析方面,以有限單元分析軟體ANSYS分析柱及殼結構之潛變挫屈變形行為及臨界時間。結果顯示,紅銅材料在常溫有明顯之暫態潛變行為,且受到的負載愈大,潛變行為愈明顯;以應變硬化方程式和修正型時間硬化方程式可以合理地描述紅銅之潛變行為;以ANSYS分析殼結構受側向壓力之結果與文獻記載相符;柱體受到的負載愈大則發生潛變挫屈的時間愈短;柱與殼結構之潛變挫屈行為對於幾何不完美十分敏感。


    The creep buckling behavior of column and shell structures at room temperature was investigated. In experiment, the mechanical properties of test structures were measured by tensile test. An experimental setup was designed to measure the material creep behavior at different stress levels. The material creep behavior is described by the strain-hardening equation and modified time-hardening equation. In analysis, the creep deformation and the corresponding critical time at creep buckling for column and shell structures were analyzed by finite element code ANSYS. The results showed that copper had apparent transient creep behavior, and copper deformed more for higher loading. The creep behavior of copper can be described well by the strain-hardening equation and modified time-hardening equation. The analytical results of critical time at creep buckling for columns became shorter as higher loading was applied. The creep buckling behavior of column and shell structures are very sensitive to geometry imperfection.

    頁次 摘要…………………………………………………………………. I 誌謝…………………………………………………………......…… III 目錄…………………………………………………………………. IV 圖表目錄……………………………………………………………. VI 第一章 簡介……………………………..…………………………. 1 1.1 研究動機………………………...………………………….. 1 1.2 文獻回顧………………………...………………………….. 1 1.3 研究主題…………………………..……………….……….. 7 第二章 潛變挫屈分析……………..…………………………. 8 2.1 有限單元潛變分析…..………….………………………….. 8 2.2 幾何模型與邊界條件.………………………....…………… 12 2.3牛頓拉夫森法..……………………....……………………… 13 2.4 挫屈分析流程…………..……....………….……………….. 14 2.5 潛變挫屈分析流程….…....………………………………… 14 第三章 實驗程序…………………………………………………… 15 3.1 試片製作…………………………………………………... 15 3.2 單軸拉伸實驗………………………………………………. 15 3.2.1 單軸拉伸實驗步驟………………………….….…..… 15 3.2.2 柱體挫屈實驗步驟.…………….…………………..… 16 3.3 單軸拉伸潛變實驗…………...……………………….……. 16 3.3.1 單軸拉伸潛變實驗步驟……………..……………..… 17 3.3.2 材料潛變常數計算…………..……………………..… 17 3.4 潛變挫屈實驗………..………………………………..……. 18 第四章 結果與討論…………………………………………………論…………………………………………………..論………………………………………………… 19 4.1 單軸拉伸實驗結果…………………….……………………度…………………………….度…………………………………… 19 4.2 單軸拉伸潛變實驗結果……..………………………...…… 20 4.2.1 應變硬化方程式參數…………..……...……….……… 20 4.2.2 修正型時間硬化方程式參數…………..……………… 22 4.3 挫屈分析與實驗..…………………………………...……… 22 4.4 彈性柱體潛變挫屈分析……...…….…………….………… 23 4.4.1 不同時間增量..………………………………………… 23 4.4.2 不同單元數量..………………………………………… 24 4.4.3 柱體負載與臨界時間之關係..………………………… 25 4.4.4 不同楊氏模數與臨界時間之關係…………………..… 25 4.5 非線彈性柱體之潛變挫屈分析與實驗………………….… 26 4.5.1柱體臨界負載與時間之關係…………………………… 26 4.5.2 幾何不完美對柱體潛變挫屈行為之影響……......…… 26 4.5.3 長度為100mm柱體之潛變挫屈行為……………….… 27 4.6 圓柱殼挫屈分析..…………………………………...……… 27 4.7 圓柱殼潛變挫屈分析..…………………………...………… 27 第五章 結論………………………..……………………………….. 29 參考文獻……………………..……………………………………… 30 圖表…………..……………………………………………………… 33

    參考文獻

    1. G. H. Luo, “Workshop on Beam Stability and Instability Issues in Electron Storage Ring,” SRF Project in NSRRC, July 2, 2004.
    2. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No. 46, pp. 14-19, 2000.
    3. 陳伯毅, “低溫超導共振腔之挫屈及變形分析與實驗,” 國立清華大學碩士論文, 2003.
    4. 鍾君勵, “含鉛/無鉛錫球變形動力學穩態潛變分析,” 國立成功大學碩士論文, 2004.
    5. 江家慶, “潛變、應力腐蝕與銲接裂紋之特論,” 國立海洋大學碩士論文, 1999.
    6. F. Garofalo, Fundamentals of Creep and Creep-Rupture in Metals, The Macmillan Company, New York, 1965.
    7. C. Yen, T. Caulfield, L. D. Roth, J. M. Wells and J. K. Tien, “Creep of Copper at Cryogenic Temperatures,” Cryogenics, Vol. 7, pp. 371-377, July, 1984.
    8. R. P. Reed, N. J. Simon and R. P. Walsh, “Creep of Copper: 4-300K,” Materials Science and Engineering, Part A, Vol. 147, pp. 23-32, 1991.
    9. G. S. Stone and H. Conrad, “Creep of Niobium at Low Temperatures,” Acta Metallurgica, Vol. 12, pp. 1125-1130, October, 1964.
    10. B. Wilshire, “Observations, Theories, and Predictions of High Temperature Creep Behavior,” Metallurgical and Materials Transactions A, Vol. 33A, pp. 241-248, February, 2002.
    11. C. Liu, P. Liu, Z. Zhao and D. O. Northwood, “Room Temperature Creep of a High Strength Steel,” Materials and Design, Vol. 22, pp. 325-328, 2001.
    12. B. Wilshire, C. J. Palmer, “Grain Size Effects During Creep of Copper,” Scripta Materialia, Vol. 46, pp. 483-488, 2002.
    13. B. Cai, Q. P. Kong, P. Cui, L. Lu and K. Lu, “Creep Behavior of Cold-Rolled Nanocrystalline Pure Copper,” Scripta Materialia, Vol. 45, pp. 1407-1413, 2001.
    14. S. H. Wang and W. Chen, “Room Temperature Creep Deformation and It’s Effect on Yielding Behaviour of a Line Pipe Steel with Discontinuous Yielding,” Materials Science and Enginering, Vol. A301, pp. 147-153, 2001.
    15. D. Dorner, K. Roller, B. Skrotzki, B. Stockhert and G. Eggeler, “Creep of a TiAl Alloy: a Comparison of Indentation and Tensile Testing,” Materials Science and Engineering, Vol. A357, pp. 346-354, 2003.
    16. R. G. Sturm, C. Dumont and F. M. Howell, “A Method of Analyzing Creep Data,” Journal of Applied Mechanics, Vol. 3, pp. A62–A66, 1936.
    17. F. H. Norton, The creep of Steel at High Temperature, McGraw Hill, New York, 1929.
    18. O. D. Sherby and P. M. Burke, “Mechanical Behaviour of Crystalline Solids at Elevated Temperature,” Progress in Materials Science, Vol. 13, pp. 325-390, 1967.
    19. R. W. Evans and B. Wilshire, Creep of Metals and Alloys, The institute of metals, London, 1985.
    20. I. Finnie and W. Heller, Creep of Engineering Materials, McGraw-Hill, New York, 1959.
    21. 劉俊佑, “鋁合金之單軸向與雙軸向之潛變分析,” 國立清華大學碩士論文, 1983.
    22. M. C. Lin and M. K. Yeh, “Buckling of Elastoplastic Circular Cylindrical Shells Under Axial Compression,” AIAA Journal, Vol. 32, No. 11, pp. 2309-2315, 1994.
    23. M. K. Yeh, M. C. Lin and W. T. Wu, “Buckling of an Elastorplastic Cylindrical Shell with a Cutout,” Engineering Structures, Vol. 21, No. 11, pp. 996-1005, 1999.
    24. M. C. Lin and M. K. Yeh, “Buckling and Postbuckling Behavior of Elastoplastic Spherical Shells with Apical Cutout Under Ring Road,” AIAA Journal, Vol. 33, No. 9, pp. 1728-1733, 1995.
    25. A. Dasgupta and H. W. Haslach Jr., “Mechanical Design Failure Models for Buckling, ” IEEE Transaction on Reliablity, Vol. 42, 1993, pp. 9-16, 1993.
    26. J. Xue and M. S. Hoo Fatt, “Bukling of a Non-uniform, Long Cylindrical Shell Subjected to External Hydrostatic Pressure,” Engineering Structures, Vol. 24, pp. 1027-1034, 2002.
    27. A. Sammari and J. F. Jullien, “Creep Buckling of Cylindrical Shells Under External Lateral Pressure,” Thin-Walled Structures, Vol. 23, pp. 255-269, 1995.
    28. C. H. Popelar and D. Evans, “Creep Ovalization and Buckling of a Linear Viscoelastic Externally Pressurized Pipe,” Journal of Pressure Vessel Technology, Vol. 126, pp. 208-215, 2004.
    29. N. Miyazaki, S. Hagihara and T. Munakata, “Creep Buckling Under Varying Loads,” Journal of Pressure Vessel Technology, Vol. 113, pp. 41-45, 1991.
    30. V. Koundy, T. Forgeron and J. Hivroz, “Creep Buckling of Ovalized Tubes Under External Pressure,” Journal of Pressure Vessel Technology, Vol. 118, pp. 460-463 , 1996.
    31. A. Combescure, “Simplified Prediction of Creep Buckling of Cylinders under External Pressure. Part 1: Finite Element Validation,” European Journal of Mechanics-A Solids, Vol. 17, pp. 1021-1036, 1998.
    32. A. Combescure, “Simplified Prediction of Creep Buckling of Cylinders under External Pressure. Part 2: Experimental Verification,” European Journal of Mechanics-A Solids , Vol. 18, pp. 1045-1059, 1999.
    33. J. L. Zeng, K. H. Tan and Z. F. Huang, “Primary Creep Buckling of Steel Columns in Fire,” Journal of constructional Steel Research, vol. 59, pp. 951–970, 2003.
    34. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
    35. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
    36. ASTM E139-83, “Standard Practice for Conducting Creep, Creep-Rapture, and Stress-Rupture Test of Metallic Materials,” Annual Book of ASTM Standards, Section 3, Vol. 03.01, pp. 313-323, 1989.
    37. ASTM E8M-89, “Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, Section 3, Vol. 03.01, pp. 147-161, 1989.
    38. W. Ramberg and W. R. Osgood, “Description of Stress-Strain Curves by Three Parameters,” NACA Technical Note, No. 902, 1943.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE