簡易檢索 / 詳目顯示

研究生: 呂孟樺
Lu,Meng Hua
論文名稱: 光學同調斷層掃瞄與雷射掃瞄式光聲顯微術之整合
Integrated Optical Coherence Tomography with Laser Scanning Photoacoustic Microscopy
指導教授: 李夢麟
Li, Meng Lin
口試委員: 陳明彰
Chen, Ming Chang
黃承彬
Huang, Chen Bin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 44
中文關鍵詞: 光學同調斷層掃描雷射掃描式光聲顯微術
外文關鍵詞: optical coherence tomography, laser scanning photoacoustic microscopy
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描在生醫光學領域中是一項非常有潛力的造影技術,此技術被廣泛應於眼科、腸胃科等。由於頻域式光學同調斷層掃描與光聲顯微術擁有相同的掃瞄機制,近年來已經有研究團隊開發出頻域式光學同調斷層掃描與雷射掃描式光聲顯微術結合,然而為了要增加光聲顯微術的掃描視野(field of view),光聲顯微術通常使用非聚焦式的超音波探頭,但使用非聚焦式的超音波探頭訊雜比(signal-to-noise ratio)較差且會產生空間脈衝響應(spatial impulse response),此效應會造成軸向解析度變差並且降低高頻超音波探頭應用在功能性影像上的效果。為了解決這個問題,我們之前的研究在光聲顯微鏡提出一個「虛擬點偵測器」概念,此概念可以同時增加訊雜比、降低空間脈衝響應,還能獲得足夠的掃描視野。在這項研究中,我們建立一個頻域式光學同調斷層掃描並與基於虛擬點偵測器概念之雷射掃描式光聲顯微鏡整合來提供在生物組織上影像的光散射和光吸收對比。我們所整合的系統其光聲顯微術的橫向解析度為7.81 μm,軸向解析度為68.2 μm,而光學同調斷層掃瞄之橫向解析度為6.20 μm,軸向解析度為15.8 μm。相較於光聲顯微鏡的軸向解析度,光學同調斷層掃描具有優異的軸向解析度。因此除了影像對比互補外,光學同調斷層掃描可以補足光聲影像不足的深度解析資訊。


    Optical coherence tomography is a promising biomedical imaging technique, which is widely used in ophthalmology and gastroenterology, etc. In recent years, there are several groups developing Fourier domain optical coherence tomography integrated with laser scanning photoacoustic microscopy since the Fourier domain optical coherence tomography and photoacoustic microscopy have the same scanning mechanism. However, in order to increase the field of view (FOV) of photoacoustic microscopy that it commonly uses an unfocused ultrasonic transducer. The signal-to-noise ratio (SNR) of unfocused ultrasonic transducer is poor and produces a spatial impulse response (SIR) effect, which can lead to deteriorate axial resolution and impede the use of the high frequency and broadband transducer required for functional imaging applications. In order to solve this problem, our previous study has developed a virtual point detector concept for the photoacoustic microscope system that it can increase the signal-to-noise ratio, reduce the space impulse response, and obtain enough scanning field of view at the same time. In this study, we build a spectral-domain optical coherence tomography (SD-OCT) integrated with virtual point detector concept based laser scanning optical-resolution photoacoustic microscopy (OR-PAM) to provide microscopic imaging with both optical scattering and absorption contrast in biological tissues. Currently, the integrated system can provide 7.81 μm lateral and 68.2 μm axial resolution for OR-PAM and 6.20 μm lateral and 15.8 μm axial resolution for SD-OCT. The SD-OCT has much better axial resolution than the OR-PAM so that in addition to complementary image contrast, the SD-OCT can complement the depth resolving capability of the OR-PAM.

    摘要 ii Abstract iv Contents vi List of Figure and Tables viii Chapter 1 Introduction 1 1.1 Photoacoustic Imaging 1 1.1.1 Principles of Photoacoustic Imaging 1 1.1.2 Optical-resolution Photoacoustic Microscopy 3 1.2 Principles of Optical Coherence Tomography 4 1.2.1 Theory of Low Coherence Interferometry 5 1.2.2 Time-Domain Optical Coherence Tomography 7 1.2.3 Fourier-Domain Optical Coherence Tomography 8 1.2.4 Axial and Lateral Resolution 11 1.3 Motivation 12 Chapter 2 System Integration 14 2.1 System Architecture 14 2.1.1 Light Source 15 2.1.2 Objective Lens 16 2.1.3 Fiber Polarization Controller 16 2.1.4 Homebuilt Spectrometer 18 2.2 System Integration 20 2.2.1 Cage System 21 2.2.2 Signal Synchronization 22 Chapter 3 Experimental Methods and Results 23 3.1 Experimental Results 23 3.1.1 Spectrum Calibration 23 3.1.2 Spatial Resolution Testing 25 3.1.3 Focal Point Calibration in x-y plane 28 3.1.4 IFT of the Spectrum at Different Depths 30 3.2 Mouse Ear In Vivo 31 Chapter 4 Conclusions and Future Work 33 4.1 Conclusions 33 4.2 Future Work 34 References 36

    [1] A. G. Bell, “On the Production and Reproduction of Sound by Light,” American Journal of Science 20, 305-324 (1880).
    [2] Lihong V. Wang, “Tutorial on Photoacoustic Microscopy and Computed Tomography,” IEEE Journal of Selected Topics in Quantum Electronics, 171-179 (2008).
    [3] Paul Beard*, "Biomedical Photoacoustic Imaging," The Royal Society, 602-631 (2011).
    [4] Lihong V. Wang, “Photoacoustic microscopy at super depths,” SPIE, 1117-1118 (2008).
    [5] Lihong V. Wang, “Prospects of photoacoustic tomography,” Med. Phys., 5758-5761 (2008).
    [6] Dan Wu, Lin Huang, Max S. Jiang, and Huabei Jiang, “Contrast Agents for Photoacoustic and Thermoacoustic Imaging: A Review,” Molecular Sciences, 23616-23639 (2014).
    [7] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of Scientific Instruments, 041101-1 – 041101-22 (2006).
    [8] Krista Jansen, Gus Van Soest, and Antonius F. W. Van Der Steen, “Intravascular Photoacoustic Imaging: A New Tool for Vulnerable Plaque Identification,” Medicine & Biology, 1037-1048 (2014).
    [9] Lihong V. Wang, and Junjie Yao, “A Practical Guide to Photoacoustic Tomography in the Life Sciences,” Nat Methods, 627–638 (2016).
    [10] Zhixing Xie, Shuliang Jiao, Hao F. Zhang, and Carmen A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Optics Letters, 1771-1773 (2009).
    [11] Hao F. Zhang, PhD, Carmen A. Puliafito, MD, MBA, and Shuliang Jiao, PhD, “Photoacoustic Ophthalmoscopy for In Vivo Retinal Imaging: Current Status and Prospects,” Ophthalmic Surg Lasers Imaging, (2014).
    [12] Yang Z, Chen J, Yao J, Lin R, Meng J, Liu C, Yang J, Li X, Wang L, Song L, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo.,” Opt. Express, (2014).
    [13] Jing Meng, Lihong V. Wang, Leslie Ying, Dong Liang, and Liang Song, “Functional Transcranial Brain Imaging by Optical-Resolution Photoacoustic Microscopy,” Optics Express, 16510-16523 (2009).
    [14] James G Fujimoto, Costas Pitris, Stephen A Boppart, and Mark E Brezinski, “Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy,” Neoplasia, 9-25 (2000).
    [15] Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, 2nd Edition, ISBN: 978-0-471-35832-9 (2007).
    [16] Pabko F. Meilan, and Mario Garavaglia, “The Rayleigh Criterion of Resolution and Light Sources of Different Spectral Composition,” SPIE, 296-303 (1996).
    [17] Tapashree Roy, Edward T. F. Rogers, Guanghui Yuan, and Nikolay I. Zheludev, “Point Spread Function of the Optical Needle Super-Oscillatory Lens,” APPLIED PHYSICS LETTERS, 231109 (2014).
    [18] Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler “Multimodal Photoacoustic and Optical Coherence Tomography Scanner Using an All Optical Detection Scheme for 3D Morphological Skin Imaging,” Biomed Opt Express, 2202–2215 (2011).
    [19] Shuliang Jiao, Zhixing Xie, Hao F. Zhang, and Carmen A. Puliafito, “Simultaneous Multimodal Imaging with Integrated Photoacoustic Mmicroscopy and Optical Coherence Tomography,” OPTICS LETTERS, 2961-2963 (2009).
    [20] Luna Florian, “Computation of the Spatial Impulse Response for Ultrasonic Fields on the Graphics Processing Units (GPU),” Final master project report, (2010).
    [21] Che-Chang Yang, Meng-Lin Li, “Development of a Virtual-Point-Detector-Concept Based Laser-scanning Optical-resolution Photoacoustic Micro-imaging System,” National Digital Library of Theses and Dissertations in Taiwan, (2016).
    [22] Wolfgang Drexler, Uwe Morgner, Ravi K. Ghanta, Franz X. Kartner, Joel S. Schuman, and James G. Fujimoto, “Ultrahigh-Resolution Ophthalmic Optical Coherence Tomography,” Nature Medicine, 10-15 (2001).
    [23] Simon S. Gao, Yali Jia, Miao Zhang, Johnny P. Su, Gangjun Liu, Thomas S. Hwang, Steven T. Bailey, David Huang, “Optical Coherence Tomography Angiography,” ARVO, (2016).
    [24] Maciej Wojtkowski, Vivek J. Srinivasan, Tony H. Ko, James G. Fujimoto, Andrzej Kowalczyk, Jay S. Duker, “Ultrahigh-Resolution, High-Speed, Fourier Domain Optical Coherence Tomography and Methods for Dispersion Compensation,” Optics Express, 2404-2422 (2004).
    [25] Lihong V. Wang, anf Hsin-i Wu, “Biomedical Optics: Principles and Imaging 1st Edition,” Wiley-Interscience, 181-205 (2007).
    [26] A. F. Fercher, W Drexler, C. K. Hitzenberger, and T. Lasser, “Optical Coherence Tomography - Principles and Applications,” IOP Publishing, 239–303 (2003).
    [27] Wolfgang Drexler, Mengyang Liu, Abhishek Kumar, Tschackad Kamali, Angelika Unterhuber, Rainer A. Leitgeb, “Optical Coherence Tomography Today: Speed, Contrast, and Multimodality,” Journal of Biomedical Optics, 071412 (2014).
    [28] R Forte, GL Cennamo, ML Finelli and G de Crecchio, “Comparison of Time Domain Stratus OCT and Spectral Domain SLO/OCT for Assessment of Macular Thickness and Volume,” National Center for Biotechnology Information Search database, 2071–2078 (2009).
    [29] Farzin Forooghian, Catherine Cukras, Catherine B. Meyerle, Emily Y. Chew, and Wai T. Wong, “Evaluation of Time Domain and Spectral Domain Optical Coherence Tomography in the Measurement of Diabetic Macular Edema,” Invest Ophthalmol Vis Sci., 4290–4296 (2008).
    [30] Jina Kim, William Brown, Jason R. Maher, Howard Levinson, and Adam Wax, “Functional Optical Coherence Tomography: Principles and Progress,” Phys Med Biol, (2015).
    [31] David A. Boas , Constantinos Pitris , and Nimmi Ramanujam, “Handbook of Biomedical Optics,” CRC Press, 281–302 (2011).
    [32] James G. Fujimoto, “Optical Coherence Tomography,” C. R. Acad. Sci., 1099–1111 (2001).
    [33] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier Domain vs. Time Domain Optical Coherence Tomography,” OSI, (2003).
    [34] Yoshiaki Yasuno, Violeta Dimitrova Madjarova, Shuichi Makita , and Nimmi Ramanujam, “Three-Dimensional and High-Speed Swept-Source Optical Coherence Tomography for in Vivo Tnvestigation of Human Snterior Eye Segments,” OSA, (2005).
    [35] Meng-Tsan Tsai, Jeng-Jie Hung, and Ming-Che Chan, “Ultrahigh-Resolution Optical Coherence Tomography with LED-Phosphor-Based Broadband Light Source,” IOP Science, 122502 (2013).
    [36] Chiung-Ting Wu, Meng-Tsan Tsai, and Cheng-Kuang Lee, “Two-Level Optical Coherence Tomography Scheme for Suppressing Spectral Saturation Artifacts,” Sensors, 13548-13555 (2014).
    [37] Tan Liu, Qing Wei, Jing Wang, Shuliang Jiao, and Hao F. Zhang, “Combined Photoacoustic Microscopy and Optical Coherence Tomography Can Measure Metabolic Rate of Oxygen,” OSA, (2011).
    [38] Wei Song, Qing Wei, Tan Liu, David Kuai, Janice M. Burke, Shuliang Jiao, and Hao F. Zhang, “Integrating Photoacoustic Ophthalmoscopy with Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and Fluorescein Angiography for a Mmultimodal Retinal Imaging Platform,” Journal of Biomedical Optics, 061206 (2012).
    [39] Xiangyang Zhang, Hao F. Zhang, and Shuliang Jiao, “Optical Coherence Photoacoustic Microscopy: Accomplishing Optical Coherence Tomography and Photoacoustic Microscopy with a Single Light Source,” Journal of Biomedical Optics, 030502 (2012).
    [40] Ji Yi, Qing Wei, Hao F. Zhang, and Vadim Backman, “Structured Interference Optical Coherence Tomography,” Optics Letters, 3048–3050 (2012).
    [41] Cuixia Dai, Xiaojing Liu, Hao F. Zhang, Carmen A. Puliafito, and Shuliang Jiao, “Absolute Retinal Blood Flow Measurement With a DualBeam Doppler Optical Coherence Tomography,” IOVS, 7998–8003 (2013).
    [42] Wenzhong Liu, Tan Liu, Wei Song, Ji Yi, and Hao F. Zhang, “Automatic Retinal Vessel Segmentation Based on Active Contours Method in Doppler Spectral-Domain Optical Coherence Tomography,” Journal of Biomedical Optics, 016002 (2013).
    [43] Wei Song, Qing Wei, Shuliang Jiao, and Hao F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-domain Optical Coherence Tomography,” Journal of Visualized Experiments, (2013).
    [44] Ji Yi, Qing Wei, Wenzhong Liu, Vadim Backman, and Hao F. Zhang, “Visible-Light Optical Coherence Tomography for Retinal Oximetry,” Optics Letters, 1796–1798 (2013).
    [45] Ji Yi, Siyu Chen, Vadim Backman, and Hao F. Zhang, “In Vivo Functional Microangiography by Visiblelight Optical Coherence Tomography,” OSA, 3603–3612 (2014).
    [46] Ji Yi, Siyu Chen, Xiao Shu, Amani A. Fawzi, and Hao F. Zhang, “Human retinal Imaging Using Visible-Light Optical Coherence Tomography Guided by Scanning Laser Ophthalmoscopy,” OSA, 3701–3713 (2015).
    [47] Siyu Chen, Ji Yi, Biqin Dong, Cheng Sun, Patrick F. Kiser, Thomas J. Hope, and Hao F. Zhang, “Imaging Endocervical Mucus Anatomy and Dynamics in Macaque Female Reproductive Track Using Optical Coherence Tomography,” Quant Imaging Med Surg, 40-45 (2015).
    [48] Siyu Chen, Ji Yi, and Hao F. Zhang, “Measuring Oxygen Saturation in Retinal and Choroidal Circulations in Rats Using Visible Light Optical Coherence Tomography Angiography,” OSA, 2840–2853 (2015).
    [49] Wenzhong Liu, Ji Yi, Siyu Chen, Shuliang Jiao, and Hao F. Zhang, “Measuring Retinal Blood Flow in Rats Using Doppler Optical Coherence Tomography Without Knowing Eyeball Axial Length,” Med. Phys., 5355–5356 (2015).
    [50] Siyu Chen, Ji Yi, Wenzhong Liu, Vadim Backman, and Hao F. Zhang, “Monte Carlo Investigation of Optical Coherence Tomography Retinal Oximetry,” IEEE Transactions on Biomedical Engineering, 2308–2315 (2015).
    [51] Wenzhong Liu, Hao Li, Ronil S. Shah Xiao Shu, Robert A. Linsenmeier, Amani A. Fawzi, and Hao F. Zhang, “Simultaneous Optical Coherence Tomography Angiography and Fluorescein Angiography in Rodents with Normal Retina and Laser-Induced Choroidal Neovascularization,” Optics Letters, 5782–5785 (2015).
    [52] Ji Yi, Wenzhong Liu, Siyu Chen, Vadim Backman, Nader Sheibani, Christine M. Sorenson, Amani A. Fawzi, Robert A. Linsenmeier, and Hao F. Zhang, “Visible Light Optical Coherence Tomography Measures Retinal Oxygen Metabolic Response to Systemic Oxygenation,” Light: Science & Applications, (2015).
    [53] Siyu Chen, Qi Liu, Xiao Shu, Brian Soetikno, Shanbao Tong, and HAO Hao F. Zhang, “Imaging Hemodynamic Response After Ischemic Dtroke in Mouse Cortex Using Visible-Light Optical Voherence Tomograph,” Biomedical Optics Express, 3377-3390 (2016).
    [54] Lei Xi, Can Duan, Huikai Xie, and Huabei Jiang, “Miniature Probe Combining Optical-Resolution Photoacoustic Microscopy and Optical Voherence Tomography for in Vivo Microcirculation Study,” Applied Optics, 1927-1931 (2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE