簡易檢索 / 詳目顯示

研究生: 王玟心
Wang, Wen-Hsin
論文名稱: 新式C反應蛋白試片於感染檢測之應用
Paper-based C-reactive protein device for infection disease detection
指導教授: 鄭兆珉
Cheng, Chao-Min
口試委員: 李怡姿
Lee, Yi-Tzu
魯才德
Lu, Tsai-Te
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 42
中文關鍵詞: C反應蛋白紙基檢測試片血液檢測乳膠凝集粒子抗體
外文關鍵詞: C-reactive protein, Paper-based diagnosis device, Blood analysis, Latex particle agglutination test
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力發展出一種新式C反應蛋白試片, 可以用於細菌感染的血液檢測,降低儀器及訓練專業人員之成本。
    C反應蛋白 (C-reactive protein,CRP) 是現今臨床醫學中一項重要的細菌感染的指標蛋白,能溶解在血清中,人體的肝臟細胞會合成及分解C反應蛋白,在正常的成人血液中C反應蛋白的濃度約為0.8mg/L左右,但當人體被細菌感染時,可能會引發急相反應,導致C反應蛋白濃度在24至72小時內迅速飆升至1000倍,甚至更高。因此能藉由C反應蛋白濃度得知病患感染情形,並作為治療預後的指標。目前臨床醫學中主要的檢驗方法為免疫比濁法,其原理為當C反應蛋白與其抗體在稀釋液體結合後會形成免疫複合物,造成溶液濁度上升,測定濁度並與標準品相比後即可定量出檢體中抗原濃度。但此方法需要在醫療機構由專業人員操作高價的分析儀器,並且檢體量須大於2 mL。若是嬰兒或需長期照護的老人在病識感低或無法及時就醫的情況下,細菌感染後將無法立即察覺。
    此新式C反應蛋白試片是將含有連接乳膠粒子的C反應蛋白抗體的反應試劑塗佈在試片流道上,一片試片有三個不同方向的流道,每個流道上的試劑量都不一樣,當人體血液中的C反應蛋白與試劑中的抗體結合後會產生凝集現象,限制血液在流道上的流動距離,計算兩個不同流道的流動距離差且對比標準檢測所得到的C反應蛋白濃度,建立標準曲線後,未來即可利用此紙基檢測試片測得血液中C反應蛋白濃度,使家庭醫師或一般民眾能進行居家檢測,並可望提供偏遠地區或資源不足的國家一項簡單、廉價、快速且方便的檢驗裝置。


    This study aims to develop a paper-based C-reactive protein device for infection disease detection, which could be used in whole blood detection of bacterial infection, decrease the cost of the professional equipment and the expense in staff training.
    C-reactive protein (CRP) is an important indicator of bacterial infection in recent years, which is solved in sera, and regulated by human hepatocytes. The CRP concentration in healthy adult is around 0.8mg/L, when the body gets the bacterial infection, it causes the acute phase response, and the CRP concentration will increase in 1000-fold times or even more in 24 to 72 hours. Consequently, we can tell the infection status of the patients from the CRP concentration, which has potential to be a prognosis marker. Nowadays, the major clinical measure method is immunoturbidimetry, the principle of this method is that the antibody-antigen complex causes the increasing turbidity of the solution, so we can measure the concentration of CRP by the different turbidity. However, the immunoturbidimetry undergoes with expensive equipment and trained staff, and the volume of testing blood needs to be more than 2 mL. To the infants and the elder, those who need long-term caring, they might not be able to be diagnosed immediately when they infect by bacteria.
    This new kind of C-reactive protein paper-based diagnosis device was designed according to antibody-antigen agglutination reaction. We apply the anti-CRP reagent on the reaction channel, in order to decrease the blood flow length in the channel. Depends on the length of blood flow, we can measure the CRP concentration, so we can use the paper-based diagnosis device to detect the CRP concentration, providing a novel method to general practitioner and the public. Moreover, we are looking forward to provide this device to the remote area or undeveloped countries.

    摘要----I Abstract----II 誌謝辭----III 目錄----IV 圖目錄----VI 第一章 緒論----1 1.1 C反應蛋白(C-Reactive protein, CRP)----1 1.2 C-反應蛋白濃度與細菌感染之關聯性----3 1.3 高敏感性C-反應蛋白 (High-sensitivity C-Reactive protein, hs-CRP) 與心血管疾病風險之關聯性----6 1.4現今常見 C反應蛋白檢測方法----7 1.4.1 免疫比濁法 (Immunoturbidimetry)(25-27)----7 1.4.2輻射狀免疫擴散法 (Radial immunodiffusion, RID)----8 1.4.3 酵素免疫分析法 (Enzyme-linked Immuno-sorbent Assay, ELISA)(29) ----9 1.5 紙基檢測試片發展概況(30-32)----10 1.5.1 紙基檢測試片簡介----10 1.5.2 紙基蠟印技術----12 1.5.3 紙基檢測試片之現今應用----13 1.5.3 C反應蛋白檢測試片----13 1.6 研究目的----15 第二章 實驗材料與方法----16 2.1 實驗材料----16 2.2 紙基試片製備----17 2.2.1 流道圖形設計----17 2.2.2 優化紙基試片製備----18 2.3 檢測試劑----18 2.3.1乳膠凝聚試驗(49)----18 2.3.2 檢測試劑塗佈----19 2.3 標準品製備----19 2.4 臨床檢體收集----20 2.4 紙基檢測試片檢體前處理----21 第三章 實驗結果與討論----23 3.1 初期模型建立檢測結果----23 3.1.1 標準曲線之建立----23 3.1.2 快速檢測試劑噴膜機參數調整----24 3.1.3 臨床檢體檢測----25 3.2 優化紙基試片----26 3.2.1 優化流道圖形設計----26 3.2.2 稀釋體積比例測試----27 3.2.3 非專一性免疫結合抑制溶液測試----28 3.3 ASK® LATEX agglutination reagent分析----30 第四章 結論與未來規劃----35 第五章 參考文獻----36

    1. J. V. Castell et al., Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology (Baltimore, Md.) 12, 1179-1186 (1990).
    2. J. E. Sims et al., cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science (New York, N.Y.) 241, 585-589 (1988).
    3. M. B. Pepys, G. M. Hirschfield, C-reactive protein: a critical update. J Clin Invest 111, 1805-1812 (2003).
    4. J. E. Volanakis, Human C-reactive protein: expression, structure, and function. Mol Immunol 38, 189-197 (2001).
    5. D. M. Vigushin, M. B. Pepys, P. N. Hawkins, Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest 91, 1351-1357 (1993).
    6. M. L. Brigden, Clinical utility of the erythrocyte sedimentation rate. American family physician 60, 1443-1450 (1999).
    7. P. Povoa et al., C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 11, 101-108 (2005).
    8. A. Matson, N. Soni, J. Sheldon, C-reactive protein as a diagnostic test of sepsis in the critically ill. Anaesthesia and intensive care 19, 182-186 (1991).
    9. P. Povoa et al., C-reactive protein as an indicator of sepsis. (1998), vol. 24, pp. 1052-1056.
    10. P. Povoa, C-reactive protein: a valuable marker of sepsis. Intensive care medicine 28, 235-243 (2002).
    11. H. Melbye, N. Stocks, Point of care testing for C-reactive protein - a new path for Australian GPs? Australian family physician 35, 513-517 (2006).
    12. J. W. Cals, C. C. Butler, R. M. Hopstaken, K. Hood, G. J. Dinant, Effect of point of care testing for C reactive protein and training in communication skills on antibiotic use in lower respiratory tract infections: cluster randomised trial. BMJ (Clinical research ed.) 338, b1374 (2009).
    13. C. Ward, Point-of-care C-reactive protein testing to optimise antibiotic use in a primary care urgent care centre setting. BMJ Open Quality 7, e000391 (2018).
    14. R. Oppong et al., Cost-effectiveness of point-of-care C-reactive protein testing to inform antibiotic prescribing decisions. British Journal of General Practice 63, e465-e471 (2013).
    15. H. Melbye, D. Hvidsten, A. Holm, S. A. Nordbo, J. Brox, The course of C-reactive protein response in untreated upper respiratory tract infection. The British journal of general practice : the journal of the Royal College of General Practitioners 54, 653-658 (2004).
    16. E. Andreeva, H. Melbye, Usefulness of C-reactive protein testing in acute cough/respiratory tract infection: an open cluster-randomized clinical trial with C-reactive protein testing in the intervention group. BMC Fam Pract 15, 80-80 (2014).
    17. L. H. Kuller, R. P. Tracy, J. Shaten, E. N. Meilahn, Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am J Epidemiol 144, 537-547 (1996).
    18. K. Musunuru et al., The use of high-sensitivity assays for C-reactive protein in clinical practice. Nat Clin Pract Cardiovasc Med 5, 621-635 (2008).
    19. W. L. Roberts et al., Evaluation of nine automated high-sensitivity C-reactive protein methods: implications for clinical and epidemiological applications. Part 2. Clin Chem 47, 418-425 (2001).
    20. W. Koenig et al., C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99, 237-242 (1999).
    21. P. M. Ridker, N. Rifai, L. Rose, J. E. Buring, N. R. Cook, Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347, 1557-1565 (2002).
    22. I. Helal et al., Comparison of C-reactive protein and high-sensitivity C-reactive protein levels in patients on hemodialysis. Saudi J Kidney Dis Transpl 23, 477-483 (2012).
    23. P. M. Ridker, Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107, 363-369 (2003).
    24. M. Algarra, D. Gomes, J. C. Esteves da Silva, Current analytical strategies for C-reactive protein quantification in blood. Clin Chim Acta 415, 1-9 (2013).
    25. A. M. Dupuy, S. Badiou, B. Descomps, J. P. Cristol, Immunoturbidimetric determination of C-reactive protein (CRP) and high-sensitivity CRP on heparin plasma. Comparison with serum determination. Clinical chemistry and laboratory medicine 41, 948-949 (2003).
    26. I. Byrjalsen, S. H. Ingwersen, Immunoturbidimetry of Serum C-Reactive Protein in Low Concentration of Polyethylene Glycol. Annals of Clinical Biochemistry 22, 269-272 (1985).
    27. F. Balboni et al., Validation of an immunoturbidimetric assay for assessment of C reactive protein in synovial fluid. Journal of Immunological Methods 457, 22-25 (2018).
    28. R. Y. Alhabbab, in Basic Serological Testing. (Springer International Publishing, Cham, 2018), pp. 105-109.
    29. R. M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51, 2415-2418 (2005).
    30. W. Dungchai, O. Chailapakul, C. S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136, 77-82 (2011).
    31. S.-C. Lin et al., Paper-based CRP Monitoring Devices. Scientific Reports 6, 38171 (2016).
    32. R. Wu et al., Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip. Anal Chim Acta 1008, 1-7 (2018).
    33. A. K. Yetisen, M. S. Akram, C. R. Lowe, Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 13, 2210-2251 (2013).
    34. C. K. Hsu et al., Paper-based ELISA for the detection of autoimmune antibodies in body fluid-the case of bullous pemphigoid. Anal Chem 86, 4605-4610 (2014).
    35. Y. Lu, W. Shi, J. Qin, B. Lin, Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing. Analytical Chemistry 82, 329-335 (2010).
    36. M. Kavruk et al., Portable Bioactive Paper-Based Sensor for Quantification of Pesticides. Journal of Analytical Methods in Chemistry 2013, 8 (2013).
    37. S. C. Lin et al., Cotton-based diagnostic devices. Sci Rep 4, 6976 (2014).
    38. A. Arena et al., Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sensors and Actuators B: Chemical 145, 488-494 (2010).
    39. L. Ma, A. Nilghaz, J. R. Choi, X. Liu, X. Lu, Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chemistry 246, 437-441 (2018).
    40. G. G. Morbioli, T. Mazzu-Nascimento, A. M. Stockton, E. Carrilho, Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Analytica Chimica Acta 970, 1-22 (2017).
    41. W. Y. Lim, B. T. Goh, S. M. Khor, Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis. Journal of Chromatography B 1060, 424-442 (2017).
    42. E. Carrilho, A. W. Martinez, G. M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Analytical Chemistry 81, 7091-7095 (2009).
    43. C. M. Kuan, S. T. Lin, T. H. Yen, Y. L. Wang, C. M. Cheng, Paper-based diagnostic devices for clinical paraquat poisoning diagnosis. Biomicrofluidics 10, 034118 (2016).
    44. M. Y. Hsu et al., Detection of aqueous VEGF concentrations before and after intravitreal injection of anti-VEGF antibody using low-volume sampling paper-based ELISA. Sci Rep 6, 34631 (2016).
    45. Y. Cai, K. Kang, Y. Liu, Y. Wang, X. He, Development of a lateral flow immunoassay of C-reactive protein detection based on red fluorescent nanoparticles. Anal Biochem 556, 129-135 (2018).
    46. P. Zhang et al., Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay. Int J Nanomedicine 10, 6161-6173 (2015).
    47. M. Dong et al., Rapid and Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with Smartphone (CRP-Chip). Sensors (Basel) 17, (2017).
    48. M. Thangamuthu, C. Santschi, J. F. M. O, Label-Free Electrochemical Immunoassay for C-Reactive Protein. Biosensors (Basel) 8, (2018).
    49. S. Yamamoto et al., Avidity of antibody and agglutinability of antibody-sensitized latex in latex agglutination test. Vet Immunol Immunopathol 36, 257-264 (1993).
    50. R. Y. Alhabbab, in Basic Serological Testing. (Springer International Publishing, Cham, 2018), pp. 59-62.

    51. J. Highton, P. Hessian, A solid-phase enzyme immunoassay for C-reactive protein: Clinical value and the effect of rheumatoid factor. Journal of Immunological Methods 68, 185-192 (1984).
    52. D. Collet-Cassart, E. Van den Abbeele, S. Poncelet, A quantitative C-reactive protein assay using latex agglutination in microtiter plates. J Immunol Methods 125, 137-141 (1989).
    53. S. Grutzmeier, H. von Schenck, Four immunochemical methods for measuring C-reactive protein in plasma compared. Clin Chem 35, 461-463 (1989).
    54. B. Young, M. Gleeson, A. W. Cripps, C-reactive protein: a critical review. Pathology 23, 118-124 (1991).
    55. P. M. Ridker, M. Cushman, M. J. Stampfer, R. P. Tracy, C. H. Hennekens, Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336, 973-979 (1997).
    56. D. Thompson, M. B. Pepys, S. P. Wood, The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7, 169-177 (1999).
    57. G. J. Blake, P. M. Ridker, Inflammatory bio-markers and cardiovascular risk prediction. Journal of internal medicine 252, 283-294 (2002).
    58. P. M. Ridker, Clinical Application of C-Reactive Protein for Cardiovascular Disease Detection and Prevention. Circulation 107, 363-369 (2003).
    59. B. J. Rosenau, P. H. Schur, Antibodies to C reactive protein. Ann Rheum Dis 65, 674-676 (2006).
    60. A. Osei-Bimpong, J. H. Meek, S. M. Lewis, ESR or CRP? A comparison of their clinical utility. Hematology (Amsterdam, Netherlands) 12, 353-357 (2007).
    61. R. Casey, J. Newcombe, J. McFadden, K. B. Bodman-Smith, The acute-phase reactant C-reactive protein binds to phosphorylcholine-expressing Neisseria meningitidis and increases uptake by human phagocytes. Infect Immun 76, 1298-1304 (2008).
    62. M. Kjelgaard-Hansen, M. Stadler, A. L. Jensen, Canine serum C-reactive protein detected by means of a near-patient test for human C-reactive protein. J Small Anim Pract 49, 282-286 (2008).
    63. J. D. McBride, M. A. Cooper, A high sensitivity assay for the inflammatory marker C-Reactive protein employing acoustic biosensing. Journal of nanobiotechnology 6, 5 (2008).
    64. S. U. Eisenhardt, J. R. Thiele, H. Bannasch, G. B. Stark, K. Peter, C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle 8, 3885-3892 (2009).
    65. A. M. Gutierrez, S. Martinez-Subiela, P. D. Eckersall, J. J. Ceron, C-reactive protein quantification in porcine saliva: a minimally invasive test for pig health monitoring. Vet J 181, 261-265 (2009).
    66. P. M. Ridker, The JUPITER trial: results, controversies, and implications for prevention. Circ Cardiovasc Qual Outcomes 2, 279-285 (2009).
    67. T. E. R. F. Collaboration, C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. The Lancet 375, 132-140 (2010).
    68. T. Komoriya et al., Development of a highly sensitive latex reagent directed against C-reactive protein (CRP) using epitope analysis with monoclonal antibodies. Bioscience, biotechnology, and biochemistry 74, 292-297 (2010).
    69. T. Komoriya, Y. Terashima, M. Ogawa, M. Moriyama, H. Kohno, Development of a high-sensitivity latex reagent for the detection of C-reactive protein. J Immunol Methods 373, 63-66 (2011).
    70. P. Charoenphol, P. J. Onyskiw, M. Carrasco-Teja, O. Eniola-Adefeso, Particle-cell dynamics in human blood flow: implications for vascular-targeted drug delivery. J Biomech 45, 2822-2828 (2012).
    71. T. Komoriya et al., Use of a highly sensitive latex reagent with amino acid spacer for determination of C-reactive protein concentration in a variety of liver diseases. J Biosci Bioeng 114, 560-563 (2012).
    72. F. J. B. Aguiar et al., C-reactive protein: clinical applications and proposals for a rational use. Revista da Associação Médica Brasileira (English Edition) 59, 85-92 (2013).
    73. J. D. Faix, Biomarkers of sepsis. Crit Rev Clin Lab Sci 50, 23-36 (2013).
    74. O. Yousuf et al., High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol 62, 397-408 (2013).
    75. J. Salazar et al., C-reactive protein: clinical and epidemiological perspectives. Cardiol Res Pract 2014, 605810 (2014).
    76. M. Soejima, Y. Koda, Evaluation of point-of-care testing of C-reactive protein in forensic autopsy cases. Forensic Sci Int 237, 27-29 (2014).
    77. F. Strang, H. Schunkert, C-reactive protein and coronary heart disease: all said--is not it? Mediators Inflamm 2014, 757123 (2014).
    78. D. Yucel, C-Reactive Protein vs. High - Sensitivity C - Reactive Protein: What is the Difference? Turkish Journal of Biochemistry 39, 43-44 (2014).
    79. B. M. Biron, A. Ayala, J. L. Lomas-Neira, Biomarkers for Sepsis: What Is and What Might Be? Biomark Insights 10, 7-17 (2015).
    80. D. M. Cate, J. A. Adkins, J. Mettakoonpitak, C. S. Henry, Recent Developments in Paper-Based Microfluidic Devices. Analytical Chemistry 87, 19-41 (2015).
    81. H. Pan, Y. Xia, M. Qin, Y. Cao, W. Wang, A simple procedure to improve the surface passivation for single molecule fluorescence studies. Phys Biol 12, 045006 (2015).
    82. A. K. Shrivastava, H. V. Singh, A. Raizada, S. K. Singh, C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart Journal 67, 89-97 (2015).
    83. J. R. Thiele et al., Targeting C-Reactive Protein in Inflammatory Disease by Preventing Conformational Changes. Mediators Inflamm 2015, 372432 (2015).
    84. M. Zarkesh et al., Diagnostic value of IL-6, CRP, WBC, and absolute neutrophil count to predict serious bacterial infection in febrile infants. Acta medica Iranica 53, 408-411 (2015).
    85. A. R. Ko et al., High-Sensitivity C-Reactive Protein Can Reflect Small Airway Obstruction in Childhood Asthma. Yonsei Med J 57, 690-697 (2016).
    86. W. S. Mielczarek, E. A. Obaje, T. T. Bachmann, M. Kersaudy-Kerhoas, Microfluidic blood plasma separation for medical diagnostics: is it worth it? Lab Chip 16, 3441-3448 (2016).
    87. M. C. Minnaard et al., C-reactive protein point-of-care testing and associated antibiotic prescribing. Fam Pract 33, 408-413 (2016).
    88. X. Qi, Y. Huang, Z. Lin, L. Xu, H. Yu, Dual-Quantum-Dots-Labeled Lateral Flow Strip Rapidly Quantifies Procalcitonin and C-reactive Protein. Nanoscale Res Lett 11, 167 (2016).
    89. M. V. Riquelme et al., Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sensing and Bio-Sensing Research 8, 47-54 (2016).
    90. S. Tangvarasittichai, S. Pongthaisong, O. Tangvarasittichai, Tumor Necrosis Factor-Α, Interleukin-6, C-Reactive Protein Levels and Insulin Resistance Associated with Type 2 Diabetes in Abdominal Obesity Women. Indian J Clin Biochem 31, 68-74 (2016).
    91. S. Altundemir, A. K. Uguz, K. Ulgen, A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics 11, 041501-041501 (2017).
    92. M. Bond et al., Towards a point-of-care strip test to diagnose sickle cell anemia. PLoS One 12, e0177732 (2017).
    93. S. E. Gabriel, C. S. Crowson, Cardiovascular Risk in Inflammatory Rheumatic Disease. 533-546.e535 (2017).
    94. C. P. Onyenekwu, C. I. Okwundu, E. A. Ochodo, Procalcitonin, C-reactive protein, and presepsin for the diagnosis of sepsis in adults and children. Cochrane Database of Systematic Reviews (2017).
    95. Y. Yang et al., Paper-Based Microfluidic Devices: Emerging Themes and Applications. Analytical Chemistry 89, 71-91 (2017).
    96. R. Y. Alhabbab, Basic serological testing. (2018).
    97. M. S. Verma et al., Sliding-strip microfluidic device enables ELISA on paper. Biosens Bioelectron 99, 77-84 (2018).

    QR CODE