研究生: |
謝宥詳 Hsieh, Yu-Hsiang |
---|---|
論文名稱: |
三羥甲基胺基甲烷(8羥基喹啉)鐵(III)蒸鍍於鎳薄膜在銅(100)之介面電子結構與磁交互作用 Interfacial Electronic Structure and Magnetic Coupling of Tri(8-hydroxuquinoline)iron(III) on Ni/Cu(100) |
指導教授: |
許瑤真
Hsu, Yao-Jane 李志浩 Lee, Chih-Hao |
口試委員: |
林宏基
Lin, Hong-Ji j魏德新 Wei, Der-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 電子結構 、磁性交互作用 、交換偏置場 、電荷轉移 |
外文關鍵詞: | Electronic Structure, Magnetic Coupling, Exchange bias, charge transfer |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討有機半導體分子(tris-(8-hydroxyquinoline) iron(III),三羥甲基胺基甲烷(8羥基喹啉)鐵(III),簡稱Feq3)蒸鍍於Ni/Cu(100)基板上的異質介面之電子結構、磁性性質、與自旋耦合等介面特性。實驗利用同步輻射能譜與顯微術測量在近自旋轉向厚度的金屬鎳薄膜與有機半導體分子Feq3之異質介面的交互作用行為,實驗結果顯示介面的Feq3分子在C、N、O 1s的光電子能譜訊號中有混合態(hybrid state)的形成,說明在介面上有很明顯的電荷轉移。另外,從近緣吸收結構光譜實驗中,可以發現Feq3與Ni基板接觸時,Feq3分子的中心鐵原子會從原本的Fe(III)還原成Fe (II)。最後從磁圓偏振二向性(XMCD)的實驗結果中,觀測到微弱的Fe L-edges XMCD訊號但無磁滯迴路的顯現。而在Ni L-edges 則仍保有XMCD的訊號以及磁滯迴路,其磁滯迴路明確顯示Feq3-Ni介面存在交換偏置場(exchange bias)的交互作用,代表在與Ni的介面上Feq3是一個反鐵磁性的材料。
This thesis mainly discusses the electronic structure, magnetic properties, and spin coupling of the heterogeneous interface of organic semiconductor molecules(tris-(8-hydroxyquinoline) iron(III)) deposited on Ni/Cu(100) substrate. The experiment uses synchrotron spectroscopy and microscopy to explore the interplay at the heterogeneous interface between the metallic nickel near the critical thickness of spin reoeientation transition(SRT) and the organic semiconductor molecule Feq3. We deposited Feq3 on nickle by thermal evaporation, and then utilized synchrotron x-ray photoelectron spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) to probe the interfacial electronic properties of Feq3 on Ni, the XPS N 1s, C 1s, and O 1s signal exhibited two peaks corresponding to molecular state and hybridized states when a sub- to monolayer of Feq3 absorbed on Ni. NEXAFS spectra implied the central iron and Ni layer have charge transfer via strong interaction, that causes the central iron(III) reduces to iron(II). Finally, from the results of magnetic circular polarization dichroism (XMCD), a slight XMCD singal at Fe L-edges of Feq3 is observed, while Ni L-edges still displays siginicant XMCD signal but gradually reduced coercivity in hysteresis loop as a function of Feq3 thickness. The results suggest an antiferromagnetic coupling appear at Feq3-Ni heterojunction interface according to the exchange bias observed in the hysteresis loop. It means that Feq3 is an antiferromagnetic material at the interface contacting with Ni.
1. Baibich, M.N., et al., Giant magnetroresistance of (001)Fe/(001) Cr magnetic superlattices. Physical Review Letters, 61, 1988.
2. Binasch, G., et al., Enhanced magnetoresistance in layered magnetic-structures with antiferromagnetic interlayer exchange. Physical Review B, 39, 1989.
3. Wolf, S., et al., Spintronics: a spin-based electronics vision for the future. Science, 294, 2001.
4. Jedema, F.J., A.T. Filip, and B.J. van Wees, Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 410, 2001.
5. Naber, W., S. Faez, and W.G. van der Wiel, Organic spintronics. Journal of Physics D: Applied Physics, 40, 2007.
6. 陳柏宏, Enhanced Magnetic Ordering and Spinterface of F4-TCNQ on Ni/Cu(100) Surface,清華大學先進光源科技學位學程學位論文(2014).
7. http://www.wmi.badw.de/teaching/.
8. file:///C:/Users/user/Downloads/etd-0728118-133032.pdf.
9. https://www.ps-taiwan.org.
10. Dediu, V., et al., Room temperature spin polarized injection in organic semiconductor. Solid State Communications, 122, 2002.
11. Kienberger, R., et al., Atomic transient recorder. Nature, 427, 2004.
12. Xiong, Z.H., et al., Giant magnetoresistance in organic spin-valves. Nature, 427, 2004.
13. Sanvito, S., Molecular spintronics. Chem Soc Rev, 2011.
14. Lam, T.N., et al., Interfacial symmetry of Co-Alq(3)-Co hybrid structures for effective spin filtering. Applied Surface Science, 354, 2015.
15. Feng, L., et al., Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 14, 2002.
16. Zhan, Y.Q., et al., Alignment of energy levels at the Alq(3)/La0.7Sr0.3MnO3 interface for organic spintronic devices. Physical Review B, 76, 2007.
17. Bogani, L. and W. Wernsdorfer, Molecular spintronics using single-molecule magnets. Nature Materials, 7, 2008.
18. Lam, T.N., et al., Effectiveness of organic molecules for spin filtering in an organic spin valve: Reaction-induced spin polarization for Co atop Alq(3). Physical Review B, 91, 2015.
19. Sun, D.L., et al., Spintronic detection of interfacial magnetic switching in a paramagnetic thin film of tris(8-hydroxyquinoline)iron(III). Physical Review B, 95, 2017.
20. http:// www .nsrrc.org.tw/.
21. John C. Vickerman, I.S.G., Surface Analysis-The Principal Techniques. WILEY, 1997.
22. 林久驊, Interfacial Electronic Structure and Magnetic Coupling of Tri(8-hydroxuquinoline)iron(III) on Co, 交通大學工學院加速器光源科技與應用學位學程, (2019).
23. https://de.wikipedia.org/.
24. Gerhard Ertl, J.K., Low energy electrons and surface chemistry. VCH, 1985.
25. Zeper, W.B., et al., Perpendicular magnetic-anisotropy and magneto-optical kerr effect of vapor-deposited Co/Pt-layered structures. Journal of Applied Physics, 65, 1989.
26. http://psroc.phys.ntu.edu.tw/bimonth/v25/605.pdf.
27. https://highscope.ch.ntu.edu.tw/wordpress/?p=1595.
28. https://www.tiri.narl.org.tw/.
29. Chen, C.T., et al., Soft-x-ray magnetic circular-dichroism at the L2,3 edges of nickle. Physical Review B, 42, 1990.
30. Haskel, D., et al., Magnetic spectroscopy at high pressures using X-ray magnetic circular dichroism. High Pressure Research, 28, 2008.
31. Kuswik, P., et al., Perpendicularly magnetized Co20Fe60B20 layer sandwiched between Au with low Gilbert damping. Journal of Physics-Condensed Matter, 29, 2017.
32. Meiklejohn, W.H. and C.P. Bean, New magnetic anisotropy. Physical Review, 105, 1957.
33. Radu, F., et al., Interfacial domain formation during magnetization reversal in exchange-biased CoO/Co bilayers. Physical Review B, 67, 2003.
34. Nogues, J., et al., Exchange bias in nanostructures. Physics Reports-Review Section of Physics Letters, 422, 2005.
35. Abarra, E.N., et al., Thermodynamic measurements of magnetic ordering in antiferromagnetic superlattices. Physical Review Letters, 77, 1996.
36. Meiklejohn, W.H., Exchange anisotropy-A review. Journal of Applied Physics, 33, 1962.
37. Brems, S., et al., Reversing the training effect in exchange biased CoO/Co bilayers. Physical Review Letters, 95, 2005.
38. Laureti, S., et al., Size Dependence of Exchange Bias in Co/CoO Nanostructures. Physical Review Letters, 108, 2012.
39. Nogues, J. and I.K. Schuller, Exchange bias. Journal of Magnetism and Magnetic Materials, 192, 1999.
40. Lin, P.H., et al., Manipulating exchange bias by spin-orbit torque. Nature Materials, 18, 2019.
41. https://www-ssrl.slac.stanford.edu/stohr/nexafs.htm.
42. Fukumoto, K., et al., Micromagnetic properties of the Cu/Ni crossed-wedge film on Cu(001). Surface Science, 514, 2002.
43. Obrien, W.L., T. Droubay, and B.P. Tonner, Transitions in the direction of magnetism in Ni/Cu(001) ultrathin films and the effects of capping layers. Physical Review B, 54, 1996.
44. Mauri, D., et al., Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. Journal of Applied Physics, 62, 1987.
45. Malozemoff, A.P., Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Physical Review B, 35, 1987.
46. Neel, L., Etude theorique-du couplage ferro-antiferromagnetique dans les couches minces. Annales De Physique, 2, 1967.
47. Jo, J., et al., Molecular Tunability of Magnetic Exchange Bias and Asymmetrical Magnetotransport in Metalloporphyrin/Co Hybrid Bilayers. ACS Nano, 13, 2019.
48. Dung, N.H., et al., Out-of-plane exchange bias and magnetic anisotropy in MnPd/Co multilayers. Journal of Magnetism and Magnetic Materials, 320, 2008.