研究生: |
魏少韋 Wei, Shau Wei |
---|---|
論文名稱: |
兩群落共同多樣性之稀釋與預測 Rarefaction and Extrapolation of Shared Diversity in Two Communities |
指導教授: |
趙蓮菊
Chao, Anne |
口試委員: |
胡殿中
Hu, Tien Chung 鄭又仁 Cheng, Yu Jen 楊欣洲 Yang, Hsin Chou |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 共同多樣性 、生物多樣性 、個體資料 、物種多樣性 、系統演化多樣性 、功能多樣性 |
外文關鍵詞: | shared diversity, biodiversity, abundance data, species diversity, phylogenetic diversity, functional diversity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對單一群落所定義的物種累積曲線(species accumulation curve,簡稱為 SAC),描述出在樣本中期望觀察到的物種數如何隨著抽樣個體數而改變,而此主題已被許多生態學的文獻廣泛討論。本文將SAC推廣至兩群落共同種累積曲線,此參數描述出在樣本中期望觀察到的共同種數如何隨著兩群落的抽樣個體數而改變。如同兩群落的共同種數,此參數在度量兩群落之間的相似性(或相異性) 上扮演著重要的角色。另外本文也針對此參數提出了一套估計的方法。
生物多樣性包含了三個層面,分別為物種多樣性(species diversity)、系統演化多樣性(phylogenetic diverstiy)和功能多樣性(functional diversity)。共同種累積曲線僅考慮各群落中各物種的相對豐富度以及共同種的相對豐富度,為了將物種與物種之間的差異也納入考量,本文以Faith (1992)提出的PD指標(定義為連結該群落所有物種之演化樹總支脈長)為基礎將其推廣至系統演化多樣性,即共同支脈長累積曲線。此外本文還以Walker等人(1999)提出的FAD指標(定義為所有物種配對之物種距離總和)為基礎將其推廣至功能多樣性,即共同功能多樣性累積曲線。
為比較本文提出之估計量與傳統最大概似估計量,本文藉由電腦模擬的方式驗證,並發現比起傳統的方法,本文所提出的方法在偏誤、均方根誤差以及95%信賴區間涵蓋率都有明顯較佳的表現。最後本文以一筆墨西哥的葉鼻蝠資料和一筆巴西雨林的樹木資料分別展示本文估計量的實際應用。
The formulation and estimation of species accumulation curve (SAC) for a single community have been extensively discussed in ecological literature. The expected SAC describes how the expected number of observed species changes when the number of sampling individuals is increased. This thesis focuses on extending SAC to shared species accumulation curve in two communities as shared species richness plays an important role to quantify the similarity and dissimilarity among multiple communities. This thesis focuses on two communities case, an estimator for the shared species accumulation curve including rarefaction and extrapolation is proposed, that is, the focus is on how the estimated expected number of shared species changes when the number of sampling individuals changes.
Biological diversity includes three aspects: species diversity, phylogenetic diversity and functional diversity. The shared species accumulation curve only considers species abundance distributions within each community and species abundances for shared species. This thesis also extends this framework to the phylogenetic diversity, that is, shared PD accumulation curve based on the Faith’s (1992) phylogenetic diversity (the sum of all branch lengths connecting all species in an assemblage). In addition, the thesis also extends the framework to the functional diversity, that is, shared FAD accumulation curve based on the functional attributed diversity (the total species pairwise distances) defined by Walker et al. (1999).
To compare the estimator proposed in this thesis to the traditional empirical method, computer simulation results are reported, when compared with the traditional empirical method, the new proposed estimator exhibits substantial improvement in bias, RMSE and the coverage probability of 95% confidence interval. Finally, the estimators proposed in this thesis are illustrated with a dataset for Mexican Phyllostomid bat and a dataset for Brazilian rain forest trees.
Bryant, J. A., C. Lamanna, H. Morlon, A. J. Kerkhoff, B. J. Enquist, and J. L. Green. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences USA 105:11505-11511.
Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11:265-270.
Chao. A., C. H. Chiu, R. K. Colwell, R. L. Chazdon, and N. J. Gotelli. 2016. Deciphering the enigma of undetected biodiversity: The Good-Turing frequency formula and its generalizations. Under review.
Chao. A., C. H. Chiu, T. Hsieh, T. Davis, D. A. Nipperess, and D. P. Faith. 2015. Rarefaction and extrapolation of phylogenetic diversity. Methods in Ecology and Evolution 6:380-388.
Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell, and A. M. Ellison. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84:45−67.
Chao, A. and L. Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533-2547.
Colwell, R. K., A. Chao, N. J. Gotelli, S. Y. Lin, C. X. Mao, R. L. Chazdon, and J. T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5:3-21.
Colwell, R. K. and J. A. Coddington. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 345:101-118.
Eforn, B. 1979. Bootstrap methods: another look at the jackknife. The Annals of Statistics:1-26.
Faith, D. P. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61:1−10.
Good, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40:237-264.
Gotelli, N. J. and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379-391.
Jaccard, P. 1908. Nouvelles recerches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles 44:223-270.
Lozupone, C., and R. Knight. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71:8228.
Magnago, L. F. S., D. P. Edwards, F. A. Edwards, A. Magrach, S. V. Martins, and W. F. Laurance. 2014. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. Journal of Ecology 102:475-485.
Medellin, R. A., M. Equihua, M. A. Amin. 2000. Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology 14:1666-1675.
Pan, H. Y., A. Chao, and W. A. Foissner. 2009. A non-parametric lower bound for the number of species shared by multiple communities. Journal of Agricultural, Biological, and Environmental Statistics 14(4):452-468.
Pielou, E. C. 1975. Ecological diversity. Wiley New York, New York, USA.
Rosindell, J. and L. J. Harmon. 2012. OneZoom: a fractal explorer for the tree of life. PLOS Biology, 10:e1001406.
Shen, T. J., A. Chao, and C. F. Lin. 2003. Predicting the number of new species in further taxonomic sampling. Ecology 84:798-804.
Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter. Kongelige Danske Videnskabernes Selskab 5(4):1-34.
Walker, B., A. Kinzig, and J. Langridge. 1999. Plant Attribute Diversity, Resilience, and Ecosystem Function: The Nature and Significance of Dominant and Minor Species. Ecosystems 2:95-113.
江霖 (2011). 物種稀釋曲線之統計推論 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文