簡易檢索 / 詳目顯示

研究生: 王博平
Wang, Po-Ping
論文名稱: 懸浮閘電晶體於0.18μm單層多晶矽CMOS製程之開發與其在類比電路上的應用
Floating Gate MOSFET in 0.18μm Single-Poly CMOS Process and Its Applications on Analog Circuits
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 懸浮閘0.18 um CMOS 製程單層多晶矽TranslinearFGMOS
外文關鍵詞: Floating gate, 0.18 um CMOS Process, Single poly, Translinear, FGMOS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在積體電路發展的歷程中,懸浮閘元件經常被用來製作非揮發性( Nonvolatile )記憶體,如EPROM、快閃記憶體等。由於懸浮閘元件可相容於標準CMOS製程中,九○年代開始,有許多研究則將其做為設計類比電路時的一種方法。近年來,隨著製程技術的日益精進,懸浮閘元件的製作方式也必須有所改變,本論文提出一個可於0.18μm單層多晶矽CMOS製程中製作的懸浮閘元件,並且能夠將其應用於類比電路設計上。
    本論文提出的懸浮閘元件結構,係由三個PMOS所組成,元件的寫入操作採用離子化熱電子注入與帶對帶穿隧電流,抹除操作則為FN 穿隧效應,同時亦嘗試以通道熱電洞注入機制做為抹除操作。本論文驗證元件在寫入與抹除操作時的電性變化,元件耐久度與資料保久度的實驗數據也會在論文中提出。
    為了能夠以SPICE模擬懸浮閘元件在電路操作時的特性,本論文透過熱電子注入電流與FN穿隧電流模型的建立,提出此元件的等效電路模型;並將實驗測量結果與模擬結果相互比較,驗證此模型的近似效果。本論文進一步將懸浮閘元件用於類比記憶體電路的設計,期望能透過電路的操作,適性地控制懸浮閘電壓,並將此元件推展至其他電路的應用。
    最後,針對Translinear電路在標準CMOS製程中製作的諸多限制,本論文應用懸浮閘元件提出一個新的Translinear 電路設計方案,藉由改變電晶體的電壓電流轉換關係,期望能夠減小Translinear電路在操作時的誤差;並以電流公式的推導與電路模擬結果,驗證此方案的可行性。


    During the years of integrated circuits (IC) development, floating gate device has been used to implement nonvolatile memories, such as EPROM, flash memory, etc. Due to its very good compatibility with standard CMOS process, since the 90's, floating gate device has been treated in some studies as an analog circuit element in the analog circuit design. As the technology moves into submicron and even deep-submicron processes, more attention needs to be paid to utilize floating gate device as an analog element. This study proposes a floating gate device that can be used in analog circuit design. This floating gate device has been fabricated in a single poly 0.18μm CMOS process,
    The proposed floating gate device is constructed with three P-channel MOSFETs. The device is programmed by ion impact hot electron, and erased by FN tunneling. In addition, erasing operation by channel hot hole injection mechanism is also studied. Experimental data of electrical characteristics during programming and erasing, device endurance, and data retention is given in this study.
    In order to simulate the characteristics of the floating device by SPICE in circuit design, this study build up a SPICE compatible effective circuit model of the floating gate device, by building up the hot electron injection current model and the FN tunneling current model. Experimental data is compared with simulation results to verify the accuracy of this effective circuit model. This model provides a simulation tool for using the floating gate device as an circuit element in the circuit design.
    This study concludes with a novel application of the floating gate device in analog circuit. To deal with many restrictions of traditional translinear circuits in standard CMOS process, this study proposes to utilize floating device as a solution. By modifying the current-voltage relationship of the transistor, reduction of errors from the translinear circuit are expected. Formula deduction and circuit simulation are both used to verify the feasibility.

    摘 要 i ABSTRACT ii 致 謝 iii 目 錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1研究背景 1 1.2 研究目的 2 1.3 章節簡介 3 第二章 元件操作模式與理論 5 2.1 熱載子注入理論 5 2.2 FN 穿隧理論 9 2.3 Band to Band Tunneling 10 第三章 文獻回顧 16 3.1單層多晶矽懸浮閘電晶體製作 16 3.1.1 Single Poly Pure CMOS (SIPPOS) EEPROM 16 3.1.2 MOS-Capacitor as a Control Gate 17 3.2 懸浮閘電晶體於電路上的運用 18 第四章 元件架構與元件可靠度 22 4.1元件架構 22 4.2 元件操作機制 (寫入、抹除與讀取)與量測環境 23 4.3 元件操作特性分析 24 4.3.1寫入操作之特性分析 24 4.3.2抹除操作之特性分析 25 4.4元件可靠度 26 4.4.1元件耐久度 26 4.4.2 資料保久度 26 4.5小結 27 第五章 單層多晶矽FGMOS於類比電路上的應用 37 5.1 電路模擬用之熱載子注入模型與FN穿隧模型 37 5.1.1熱載子注入模型簡化式 37 5.1.2熱載子注入模型參數萃取 38 5.1.3 FN穿隧模型與參數萃取 40 5.2熱載子注入之電路模型驗證 40 5.3 類比記憶體電路模擬結果與量測結果探討 41 第六章 單層多晶矽懸浮閘電晶體於Translinear電路上的應用 51 6.1 Translinear 電路 51 6.1.1 Translinear 電路於CMOS製程 52 6.2 新的Translinear 電路設計方案 53 6.3均方根實現電路與電路模擬結果 56 6.4模擬結果探討與結論 58 第七章 結論 65 7.1 懸浮閘電晶體與其在電路之運用 65 7.2 未來工作 66 附錄 67 附錄一 圖 6. 1之BJT均方根實現電路工作原理推導 67 附錄二 圖 6. 2之BJT正規化實現電路工作原理推導 68 附錄三 Subthreshold MOSFET均方根實現電路工作原理推導 70 附錄四 Subthreshold MOSFET正規化實現電路工作原理推導 72 參考文獻 74

    [1]Paul Hasler, Tor S. Lande, “Overview of Floating-Gate Devices, Circuits, and Systems,” IEEE Transactions on Circuits and Systems—II, vol. 48, no. 1, 2001
    [2]Chris Diorio, David Hsu, and Miguel Figueroa, “Adaptive CMOS: From biological inspiration to systems-on-a-chip,” Proceedings of the IEEE, vol. 90, no. 3, pp. 345–357, 2002.
    [3]Joe Brewer, Manzur Gill ,Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices, Wiley-IEEE Press, 2008
    [4]Simon Tam, Ping-Keung Ko, and Chenming Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Transactions on Electron Devices, vol. 31, no. 9, pp. 1116–1125, Sep. 1984.
    [5]Paul Hasler, Andreas Andreou, Chris Diorio, Bradley A. Minch, and Carver Mead, “Impact ionization and hot-electron injection derived consistently from Boltzman transport,” VLSI Design, vol. 8, no. 14, pp. 455-461, 1998.
    [6]Chris Duffy and Paul Hasler, “Modeling Hot-Electron Injection in pFET’s,” Journal of Computational Electronics, vol. 2, no. 2, pp. 317-322, 2003.
    [7]Tong-Chern Ong, Ping-Keung Ko, and Chenming Hu, “Hot-Carrier Current Modeling and Device Degradation in Surface Channel p-MOSFET’s,” IEEE Transactions on Electron Devices, vol. 37, no. 7, pp. 1658-1666, 1990.
    [8]M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” Journal of Applied Physics, vol. 40, no. 6, pp. 278–283, 1969.
    [9]Katsuhiko Ohsaki, Noriaki Asamoto, and Shunichi Takagaki, “A single poly EEPROM cell structure for use in standard CMOS processes,” IEEE Journal of Solid-State Circuist, vol. 29, Issue 3 , pp. 311-316, 1994.
    [10]Bradley A. Minch and Paul Hasler, “A floating-gate technology for digital CMOS processes,” International Symposium on Circuits and Systems, vol. 2, 1999, pp. 400-403.
    [11]Tyson S. Hall, ChristopherM. Twigg, Jordan D. Gray, Paul Hasler, and David V. Anderson, “Large-Scale Field-Programmable Analog Arrays for Analog Signal Processing,” IEEE Transactions on Circuits and Systems—I, vol. 52, Issue 11, pp. 2298 - 2307 , 2005
    [12]Yanyi Liu Wong; Cohen M.H.; Abshire P.A, “A 1.2-GHz Comparator With Adaptable Offset in 0.35-μm CMOS,” IEEE Transactions on Circuits and Systems—I, vol. 55, Issue 9, pp. 2584 - 2594 , 2008
    [13]Harrison R.R., “Floating gate current mirror for gain correction in CMOS translinear circuits,” IEEE International Symposium on Circuits and Systems, 1999. Vol. 2, page(s): 404-407
    [14]John Hyde, Todd Humes, Chris Diorio, Mike Thomas, Miguel Figueroa, “A 300-MS/s 14-bit Digital-to-Analog Converter in Logic CMOS,” “IEEE Journal of Solid-State Circuits, vol. 38, no. 5, MAY 2003
    [15]Venkatesh Srinivasan, Guillermo Serrano, Christopher M. Twigg, and Paul Hasler, “A Floating-Gate-Based Programmable CMOS Reference,” IEEE Transactions on Circuits and Systems—I, vol. 55, Issue 11, pp. 3448 - 3456, 2008
    [16]Sunay Shah, Steve Collins, “A Temperature Independent Trimmable Current Source,” IEEE International Symposium on Circuits and Systems, 2002. Vol. 1, pp. 713-716
    [17]Paul Hasler, Bradley A. Minch, and Chris Diorio, “An Autozeroing Floating-Gate Amplifier,”' IEEE Transactions on Circuits and Systems II, vol. 48, Issue 1, pp.74-82, 2001.
    [18]Paul Hasler, T. Stanford, and B. A. Minch, “A second-order section built from autozeroing floating-gate amplifiers,” IEEE Transactions on Circuits and Systems II, vol. 48, pp. 116–120, 2001.
    [19]S.-J. Shen, C.-S. Yang, Y.-S. Wang and C. C.-H. Hsu, “A self-convergent programming scheme for multi-level P-channel flash memory,” Japanese Journal of Applied Physics, vol. 39, part 1, no. 1, pp.1-7, 1998.
    [20]S.S. Chung et al., “N-channel versus P-channel flash EEPROM – Which one has better reliabilities,” Proceedings of IEEE International Reliability Physics Symposium, 39th Annual, 2001, pp. 67-72.
    [21]林鴻志, “深次微米閘極技術之發展與未來驅勢(II),” 國家奈米實驗室奈米通訊, vol.3 pp.L111, 1998

    [22]Hiroshi Nozawa and Susumu Kohyama, “A Thermionic Electron Emission Model for Charge Retention in SAMOS Structure,” Japanese Journal of Applied Physics, vol. 21, part 1, pp.L111-L112, 1982.
    [23]Kung-Hong Lee, Shih-Chen Wang, and Ya-Chin King, “Self-Convergent Scheme for Logic-Process-Based Multilevel/Analog Memory, ” IEEE Transactions on Electron Devices, vol. 52, no. 12, pp. 2676-2681, 2005.
    [24]王世辰, “以相容於SPICE之熱載子注入模型探討新型嵌入式快閃記憶體之元件特性,” 國立清華大學碩士學位論文,民國92年
    [25]黃正達, 陳新, “高階析度非揮發性類比記憶體研究發展,” 國立清華大學碩士學位論文, 民國96年
    [26]Barrie Gilbert, “Translinear circuits: a proposed classification,” Electronics Letters, vol. 11, Issue 1, pp.14–16, 1975.
    [27]Teresa Serrano-Gotarredona, Bernab’e Linares-Barranco, and Andreas G. Andreou, “A General Translinear Principle for Subthreshold MOS Transistors,” IEEE Transactions on circuits and systems—I: Fundamental Theory and Applications, vol. 46, no. 5, 1999
    [28]A. G. Andreou and K. A. Boahen, “Translinear Circuits in Subthreshold MOS”, Analog Integrated Circuits and Signal Processing, vol. 9, pp. 141-166, 1996.
    [29]B. A. Minch, C. Diorio, P. Hasler, and C. A. Mead, “Translinear circuits using subthreshold floating-gate MOS transistors,” Analog Integrated Circuits and Signal Processing, vol 9, no. 2, pp. 167–179, 1996.
    [30]Vincent F. Koosh, Rodney M. Goodman, “Dynamic charge restoration of floating gate subthreshold MOS translinear circuits.” IEEE International Symposium on Circuits and Systems, 2001, Vol. 1, pp. 33-36.
    [31]Evert Seevinck and Remco J. Wiegerink, “Generalized translinear circuit principle,” IEEE Journal of Solid-State Circuits, vol. 26, pp. 1198–1102, 1991.
    [32]Barrie Gilbert, “Translinear Circuits: An Historical Overview” Analog Integrated Circuits and Signal Processing, vol. 9, no.2, pp 95-118, 1996.
    [33] Shih-Chii Liu, Jorg Kramer, Giacomo Indiveri, Tobias Delbruck, Rodney Douglas, Analog VLSI: Circuits and Principles, The MIT Press, London, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE