簡易檢索 / 詳目顯示

研究生: 曾栢暐
Tseng, Po-Wei
論文名稱: 無油溝多腔型軸頸式液靜壓線性滑軌搭配薄膜節流器之性能分析
Analysis of Multi-Recess Hydrostatic Linear Journal Guide With Membrane Restrictor
指導教授: 林士傑
Lin, Shih-Chieh
口試委員: 曹哲之
Tsao, Che-Chih
張禎元
Chang, Jen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 84
中文關鍵詞: 液靜壓軸承薄膜式節流器流阻
外文關鍵詞: hydrostatic bearing, membrane-type restrictor, flow resistance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展日新月異,為了因應光學、電子3C、醫療產業的精密加工需求,許多工具機台採用液靜壓軸承減少振動提升加工精度,和ㄧ般滾動軸承相比,液靜壓軸承的內部結構較為複雜,因此在模擬分析上也較為困難。另外節流器為此系統重要的壓力補償元件,節流器的性能將會直接影響軸承的表現,在文獻中可以看到主動式節流器的性能較固定式節流器的性能來的優異,故本文將探討以薄膜可變式節流器用於液靜壓軸頸式線性滑軌上時節流器設計參數對滑軌性能的影響。
    在液靜壓軸頸式軸承內部結構方面,將採用無油溝多腔型作為設計,因為此設計較有油溝多墊型的設計擁有更多的封油面面積,因此在乘載力、剛性等等的性能表現會更加優異,但因為此設計會使得軸承內部各油腔的壓力相互影響,因此在使用有限差分法模擬工作流膜狀態也較為困難。在薄膜式節流器方面,過去研究的研究顯示,模擬與實際的表現有不少的差異,因此本研究將探討加工可能造成的誤差並修正模擬最後利用實驗和模擬進行分析比對。


    In order to meet the needs of high precision and high stiffness, which following the technology improves every day, hydrostatic bearing is usually used in machine tools design. Comparing with the rolling bearing, the structure of hydrostatic bearing is more complicated so that more difficult to analyze its performance of hydrostatic bearing. Besides, the elements of restrictor will affect the performance of the bearing. In the previous studies show the self-compensation have higher bearing stiffness performance than the passive restrictors. Therefore, the study of this thesis will analyze the membrane-type restrictor for the linear journal guide.
    The structure of the journal bearing will use the multi-recess in design. Because of this design has bigger land area than the multi-pad bearing; consequently, have higher load capacity and stiffness. Nonetheless, each recess pressure will be influenced by the others, so it’s harder to analyze by solving the Reynolds equation with Finite difference method. In the past, the few studies of the membrane restrictor have some difference between the simulation and experiment. In this study, it will discuss how machining leads the errors and correct the errors in the simulation. At the end of this study, the experiment is compared with the simulation to verify whether the analysis is in accordance with the simulation.

    目錄 I 圖目錄 III 表目錄 VI 符號索引 VII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究目的 3 第二章 文獻回顧 4 2.1液靜壓之歷史與應用 4 2.2液靜壓軸承之工作原理 6 2.3節流器之種類 9 毛細管節流器 9 孔口節流器 10 滑閥式節流器 11 薄膜式節流器 12 2.4薄膜節流器的研究 15 單向薄膜節流器 15 雙向薄膜節流器 17 2.5軸頸式液靜壓軸承 19 軸頸式液靜壓種類 20 第三章 研究方法與步驟 24 3.1液靜壓理論公式推導 26 雷諾方程式 26 3.2油膜差分網格模擬 29 有限差分法應用於液靜壓軸頸式軸承 29 3.3薄膜節流器理論公式推導 35 薄膜節流器節流之腔壓公式探討 37 薄膜節流器參數優化 41 3.4程式計算流程 44 3.5薄膜節流器參數對軸承性能的影響 47 第四章 薄膜節流器設計與量測 52 4.1膜片剛性的估算 52 4.2薄膜節流器設計 54 4.3薄膜節流器相關測試 57 第五章 軸承實驗規畫與結果 63 5.1實驗架設 63 5.2多腔型軸承負載實驗 64 第六章 結論 73 6.1結論 73 6.2未來展望 76 附件 82

    [1] P.A. McKeown, High precision manufacturing and the British economy, James Clayton Lecture, pp. 147-165, 1986.
    [2] 黃華志, 液靜壓軸承的設計與應用, 工研院, 2008.
    [3] M. Moshin, The Use of Controlled Restrictors for Compensating Hydrostatic Bearing, Third International Conference on Machine Tool Design Research, 1963.
    [4] W.B. Rowe, Hydrostatic, Aerostatic, and Hybrid Bearing Design, Elsevier, 2012, pp. 275-314.
    [5] A. M. Loeb & H. C. Rippel, Determination of optimum proportions for hydrostatic bearings, ASLE Transactions, pp. 241-247, 1958.
    [6] R. Bassani & B. Piccigallo, Hydrostatic Lubrication, Amsterdam, AE: Elsevier, 1992.
    [7] M.S.A. Kotilainen, Design and manufacturing of modular self-compensating hydrostatic journal bearings (Doctoral dissertation, MIT), 2000.
    [8] B. Bhushan, Introduction to Tribology, New York: John Wiley and Sons, 2002.
    [9] A. Harnoy, Bearing Design in Machinery: Engineering Tribology and Lubrication, New York: Marcel Dekker, 2003.
    [10] B.J. Hamrock, R.S. Steven & B.O. Jacobson, Fundamentals of Fluid Film Lubrication, New York, NY: Marcel Dekker, 2004.
    [11] N.R. Kane, Surface self-compensated hydrostatic bearings (Doctoral dissertation, Massachusetts Institute of Technology), 1999.
    [12] J.G.C. DeGast , A New Type of Controlled Restrictor (M.D.R) For Double Film Hydrostatic Bearings and Its Application to High-Precision Machine Tools, Pergamon Press, Oxford, 1966.
    [13] W.B. Rowe & K.J. Stout, Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearings, Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, pp. 421-429, 1975.
    [14] S.A. Morsi, Passively and Actively Controlled Externall Pressurized Oil-Film Bearings, Journal of Tribology, pp. 56-63, 1972.
    [15] Y. Kang, P.C. Shen, C.H. Chen, Y.P. Chang & H.H. Lee, Modified determination of fluid resistance for membrane-type restrictors, Industrial Lubrication and Tribology, pp. 123-131, 2007.
    [16] Y.Kang, P.C. Shen, C.H. Chen, Y. Pun & H.H. Lee, Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression, Tribology International, pp. 1369-1380, 2007.
    [17] T.H. Lai, T.Y. Chang, Y.L. Yang & S.C. Lin, Parameters design of a membrane-type restrictor with single-pad hydrostatic bearing to achieve high static stiffness, ELSEVIER, pp. 206-212, 2017.
    [18] S. Yoshimoto, T. Kume & T. Shitara, Axial load capacity of water-lubricated hydrostatic conical bearings with spiral grooves for high speed spindles, ELSEVIER, pp. 331-338, 1998.
    [19] S.C. Lin & M.C. Lin, Design and Test of Hydrostatic Rotary Table(Master thesis, NTHU), 2016.
    [20] B.C. Majumdar, "The numerical solution of hydrostatic oil journal bearings with several supply ports," Wear, pp. 389-396, 1969.
    [21] B. Ghosh, An exact analysis of a hydrostatic journal bearing with a large circumferential sill, Elsevier, pp. 367-375, 1972.
    [22] J. P. O' Donoghue & W.B. Rowe, Hydrostatic journal bearing (exact procedure), Tribology, 1(4), pp. 230-236, 1968.
    [23] C.H. Lee & S.C. Lin, 軸頸式液靜壓線性滑軌在工具機上的應用(Master thesis, NTHU), 2015.
    [24] Y.U. Yang & S.C. Lin, Numerical Simulation Analysisand Design of Membrane-type Restrictor(Master thesis, NTHU), 2017.
    [25] W. Pan, Y.T. Zhang & C.H. Lu, An accurate method for determination of the performance chatacteristics of membrance-type restrictors, 2018.
    [26] M.C. Tsai & S.C. Lin, 搭配薄膜節流器軸頸式液靜壓線性滑軌之性能分析(Master thesis, NTHU), 2017.
    [27] M.K. Ghosh & B.C. Majumdart, Design of multirecess hydrostatic oil journal bearing, Elsevier, pp. 73-78, 1980.
    [28] C. Cusano, Characteristics of Externally Pressurized Journal Bearing with Membrane type Variable-flow Restrictors as compensating elements, 1974.

    QR CODE