簡易檢索 / 詳目顯示

研究生: 張銘翔
Chang, Ming-Hsiang
論文名稱: 以實驗方法探討微流道傾斜式結構誘導聲流的流場與熱傳增益
Experimental study on flow field and heat transfer analysis of microchannel flow with staggered structures using acoustic streaming
指導教授: 劉通敏
Liou, Tong-Miin
黃智永
Huang, Chih-Yung
口試委員: 田維欣
Tien, Wei-Hsin
劉耀先
Liu, Yao-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 143
中文關鍵詞: 微流道誘導聲流效應熱傳微粒子影像測速法溫度螢光感測塗料
外文關鍵詞: Microchannel, Acoustic streaming, Heat transfer, Micro Particle Image Velocimetry, Temperature Sensitive Paint
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討結構誘導聲流效應在不同傾斜角度(α)微流道內的流場特性及熱傳分析。微流道的製作基材為PDMS,結構設計於流道上下壁面交錯排列,並改變結構的傾角為45、60、90、120、135度。實驗利用微粒子影像測速法搭配流場可視化對結構誘導聲流進行流場分析,再透過TSP溫度螢光感測塗料及壓力量測討論熱傳效益與幫浦耗能。本研究先以不同的加熱時間量測液體及壁面溫度變化,以討論在微流道內的熱傳現象,並歸納出流場的溫度穩定時間。
    在有誘導效應的流場中顯示,在不同的角度及雷諾數範圍0.5~2的條件下,速度場在結構物附近皆有被擾動的現象,同一個流道於不同雷諾數下,皆隨著主流速度的提升而結構誘導聲流效應會被抑制。在雷諾數為0.5、1、2下,90度結構皆有最大的∆V^*變化,表示在此條件下結構誘導聲流擾動效果最劇烈,而不同角度的聲流效應,由弱至強依序為45、135、60、120、90度結構。後續以微型加熱器施加0.2 W/〖mm〗^2的固定熱通量於流道底部加熱,量測不同傾斜角度在關閉與開啟壓電片的液體溫度變化及入出口的壓力差,以入出口的焓值變化與焓值耗能比分別討論熱傳變化以及熱傳效益,結果顯示在三種雷諾數下,60、90、120度結構在開啟壓片後皆有較大的焓值變化,另以幫浦耗能討論在不同角度的效益,以45、60度有較低的耗能。總體而言,考慮熱傳效益與幫浦耗能的影響,60度結構具有較佳表現。


    This study aims to investigate acoustic streaming effect on flow field and heat transfer enhancement in microchannel flow with staggered structures and the incline angles (α) from 45 to 135 degrees at different angles. The microchannel was made of PDMS and the staggered structures were positioned on the side wall of microchannel. The flow field with acoustic streaming was analyzed by Micro Particle Image Velocimetry (Micro-PIV) and flow visualization (FV) technique at the Reynolds number (Re) from 0.5 to 2. The heat transfer analysis and pumping power with acoustic streaming was analyzed by Temperature Sensitive Paint (TSP) and manometer pressure sensors. Due to the profiles of fluid temperature and wall temperature changing with heating process, the experiment was waited up to 3 min to reach steady state. From the flow field result by PIV measurements, the acoustic streaming with staggered structures were suppressed with increase of Re. The acoustic streaming provided most effective disturbance at the 90 degree strucrure. The effect of acoustic streaming on the microchannel flow from weak to strong were 45、135、60、120、90 degree structure.
    For the heat transfer analysis, microheaters were used to provide constant heat flux 0.2 W/〖mm〗^2 thermal boundary condition at bottom of microchannel. In order to compare the heat transfer enhancement and discuss the effect with/without acoustic streaming at different structure angles, fluid temperature and pressure differences between inlet and outlet were measured. From the experimental result, the acoustic streaming provided highest enthalpy change with the 60, 90, and 120 degree strucrures microchannel flow between acoustic streaming on and off. However, the 45 and 60 degree structure showed small pressure drop and less pump power required. Due to concern of pumping power required to drive the flow in microchannel, the acoustic streaming with 60 degree strucrure can provided higher heat transfer while requie less pump power.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XVII 第1章、 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.2.1 微流道的熱傳研究 3 1.2.2 微粒子影像測速法(Micro-PIV)發展 6 1.2.3 溫度螢光感測塗料(TSP) 9 1.2.4 致動器共振誘導聲流效應 11 1.3 研究目的 21 1.4 研究架構 22 第2章、 實驗原理 23 2.1 Micro-PIV量測原理 23 2.2 TSP溫度螢光感測塗料 25 2.3 微流道熱傳分析 28 第3章、 實驗方法 31 3.1 微流道製作 31 3.2 微型加熱器製作 35 3.3 Micro-PIV速度量測系統 38 3.3.1 Micro-PIV實驗儀器架設 38 3.3.2 訊號產生器時序設定 39 3.3.3 Micro-PIV螢光粒子選用 41 3.3.4 相關深度計算 44 3.4 流場可視化系統 46 3.5 TSP溫度量測系統 48 3.5.1 TSP量測儀器架設 48 3.5.2 實驗架設的軸向熱傳因子 50 3.5.3 TSP溫度螢光感測塗料/溶液調配 51 3.6 TSP校正曲線 52 3.7 熱損計算 56 3.8 壓電片振動頻率與振幅 58 3.9 壓力量測 58 3.10 誤差分析 59 3.10.1 速度場誤差分析 59 3.10.2 液體溫度場誤差分析 59 第4章、 微流道速度與溫度量測的驗證 61 4.1 直管道速度場驗證 61 4.2 直管道溫度場驗證 64 4.3 加熱時間對液壁溫量測的影響 67 4.3.1 在不同加熱時間與雷諾數下溫度場分佈 68 4.3.2 短時間加熱的流場溫度分布 70 4.3.3 流場溫度穩定時間 71 4.4 直管道壓力差驗證 73 第5章、 不同傾斜角度的交錯式結構誘導聲流效應的流場分析 75 5.1 交錯式結構α=90°的速度場 76 5.2 交錯式後傾結構物的速度場 85 5.2.1 交錯式結構α=60°的速度場 85 5.2.2 交錯式結構α=45°的速度場 91 5.3 交錯式前傾結構物的速度場 98 5.3.1 交錯式結構α=120°的速度場 98 5.3.2 交錯式結構α=135°的速度場 103 5.4 不同結構角度的速度場比較 108 第6章、 不同傾斜角度的交錯式結構誘導聲流效應的液溫量測 110 6.1 確認壓電片是否輸入熱量 110 6.2 交錯式結構α=90°的液體溫度場 112 6.3 交錯式後傾結構物的液體溫度場 116 6.3.1 交錯式結構α=60°的液體溫度場 116 6.3.2 交錯式結構α=45°的液體溫度場 120 6.4 交錯式前傾結構物的液體溫度場 124 6.4.1 交錯式結構α=120°的液體溫度場 124 6.4.2 交錯式結構α=135°的液體溫度場 128 6.5 不同結構角度的液體溫度比較 132 第7章、 結論與未來工作建議 137 7.1 結論 137 7.2 未來工作建議 139 參考文獻 140 附錄 142

    1. Bejan, A., Convection heat transfer. 2013: John wiley & sons.
    2. Morini, G.L., Single-phase convective heat transfer in microchannels: a review of experimental results. International Journal of Thermal Sciences, 2004. 43(7): p. 631-651.
    3. Maranzana, G., I. Perry, and D. Maillet, Mini-and micro-channels: influence of axial conduction in the walls. International journal of heat and mass transfer, 2004. 47(17-18): p. 3993-4004.
    4. Adrian, R.J., Particle-imaging techniques for experimental fluid mechanics. Annual review of fluid mechanics, 1991. 23(1): p. 261-304.
    5. Keane, R.D. and R.J. Adrian, Theory of cross-correlation analysis of PIV images. Applied scientific research, 1992. 49(3): p. 191-215.
    6. Santiago, J.G., et al., A particle image velocimetry system for microfluidics. Experiments in fluids, 1998. 25(4): p. 316-319.
    7. Meinhart, C.D., S.T. Wereley, and J.G. Santiago, PIV measurements of a microchannel flow. Experiments in fluids, 1999. 27(5): p. 414-419.
    8. Liu, T., Pressure and Temperature Sensitive Paints. Encyclopedia of Aerospace Engineering, 2010.
    9. Risius, S., et al., Determination of heat transfer into a wedge model in a hypersonic flow using temperature-sensitive paint. Experiments in Fluids, 2017. 58(9): p. 117.
    10. Crafton, J., et al. Application of temperature and pressure sensitive paint to an obliquely impinging jet. in 37th Aerospace Sciences Meeting and Exhibit. 1998.
    11. Huang, C.-Y., et al., The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel. Journal of Micromechanics and Microengineering, 2013. 23(3): p. 037001.
    12. Steinke, M.E. and S.G. Kandlikar. Single-phase heat transfer enhancement techniques in microchannel and minichannel flows. in ASME 2004 2nd International Conference on Microchannels and Minichannels. 2004. American Society of Mechanical Engineers.
    13. Ahmed, D., et al., A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluidics and nanofluidics, 2009. 7(5): p. 727.
    14. Tovar, A.R. and A.P. Lee, Lateral cavity acoustic transducer. Lab on a Chip, 2009. 9(1): p. 41-43.
    15. Ahmed, D., et al., Acoustofluidic chemical waveform generator and switch. Analytical chemistry, 2014. 86(23): p. 11803-11810.
    16. Zheng, Y.-X., PIV and TSP measurement and analysis on flow field and heat transfer with bubble-induced acoustic streaming, in Master, PME, NTHU. 2016.
    17. Liang, C.-C., Aspect ratio effects on microchannel flow and heat transfer enhancement with bubble-induced acoustic streaming, in Master, PME, NTHU. 2018.
    18. Huang, P.-H., et al., An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab on a Chip, 2013. 13(19): p. 3847-3852.
    19. Huang, P.-H., et al., A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab on a Chip, 2014. 14(22): p. 4319-4323.
    20. Ozcelik, A., et al., Acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures. Small, 2016. 12(37): p. 5120-5125.
    21. Huang, K.-L., Experimental study on flow field and heat transfer analysis in microchannel flow using acoustic streaming with staggered structures, in Master, PME, NTHU. 2018.
    22. Meinhart, C.D., S.T. Wereley, and J.G. Santiago, A PIV algorithm for estimating time-averaged velocity fields. Journal of Fluids Engineering, 2000. 122(2): p. 285-289.
    23. Heine, J. and K. Müller-Buschbaum, Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chemical Society Reviews, 2013. 42(24): p. 9232-9242.
    24. Microchem, SU-8 2000 Permanent Epoxy Negative Photoresist. Process. Guidel, 2005.
    25. Wereley, S. and L. Gui, A correlation-based central difference image correction (CDIC) method and application in a four-roll mill flow PIV measurement. Experiments in Fluids, 2003. 34(1): p. 42-51.
    26. Rossi, M., et al., On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV. Experiments in fluids, 2012. 52(4): p. 1063-1075.
    27. Huang, B.-H., The experimental study of heat transfer with segmented flow in microchannel using temperature sensitive paint and micro particle image velocimetry, in Master, PME, NTHU. 2013.
    28. Lee, K., et al., Photophysical properties of tris (bipyridyl) ruthenium (II) thin films and devices. Physical Chemistry Chemical Physics, 2003. 5(12): p. 2706-2709.
    29. Huang, C.-Y., C.-M. Lai, and J.-S. Li, Applications of pixel-by-pixel calibration method in microscale measurements with pressure-sensitive paint. Journal of Microelectromechanical Systems, 2012. 21(5): p. 1090-1097.
    30. Lima, R., et al., Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Measurement Science and Technology, 2006. 17(4): p. 797.
    31. Bahrami, M., M. Yovanovich, and J. Culham, Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section. Journal of Fluids Engineering, 2006. 128(5): p. 1036-1044.

    QR CODE