研究生: |
陳乾燦 Chen, Qian-Can |
---|---|
論文名稱: |
一類數值方法在量子相變的研究 Investigating Quantum Phase Transitions via Numerical methods |
指導教授: |
張博堯
Chang, Po-Yao |
口試委員: |
鍾佳民
Chung, Chia-Min 黃一平 Huang, Yi-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 密度矩陣重整化 、晶格規範場論 、希格斯規範場論 、玻色愛因斯坦凝聚 、格羅斯–皮塔耶夫斯基方程 、托馬斯-費米估計 |
外文關鍵詞: | Density Matrix renormalization group, Lattice gauge field theory, Higgs gauge field theory, Bose-Einstein Condensation, Gross–Pitaevskii equation, Thomas-Fermi approximation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究兩個題目,一個是ZN 晶格規範場論,這個工作使用密度矩陣重整
化群本重新計算了的[38]部分結果,主要復現了在梯子幾何晶格中的純ZN規範場
模型,當N ≤ 4時候,只存在禁閉相。在梯子幾何晶格中的純ZN 希格斯物質場
上,當N ≤ 4的情況,我們重現了無序相與希格斯相,而在N=5的時候,重現
了準長程距的BKT相變。在Z2希格斯場耦合規範場的情況複現了希格斯相與無
序相,但整個相空間都在禁閉相。這個複現的工作主要是想要未來研究非阿貝
爾晶格規範場論作訓練準備。
另一個工作是與冷原子實驗合作,調查了在可調實驗參數內,兩種玻色愛因
斯坦鋰銫原子凝聚的情況,呈現出分離相,並給出實驗與數值模擬的結果。
We have pursued two distinct research topics. The first job involves $\mathbb{Z}_{N}$ lattice gauge theory and reproduce part of the results of reference \cite{nyhegn2021z}. Specifically, the confinement phase for $N\leq5$ in the pure gauge $\mathbb{Z}_{N}$ ladder geometry are successfully reproduced by Density matrix renormalization group. Similarly, the pure matter $\mathbb{Z}_{N}$ ladder geometry, the disorder and order (Higgs) phases for $N\leq4$ are getted same result in the reference. Furthermore, the $N=5$ case, the quasi-long-range order characterized by the Berezinskii-Kosterlitz-Thouless (BKT) type phase transition verify by fidelity susceptibility. In the context of $\mathbb{Z}_{2}$ matter coupled with gauge field, we managed to reproduce the Higgs and disorder phases, with the entire phase space exhibiting confinement phase. This replication effort was primarily driven by the intention to explore Non-abelian lattice gauge theory in the future works.
In our second work, we collaborated with cold atom experiment to investigate the emergence of an immiscible phase in two species $Li^{7}$ and $Cs^{133}$ of Bose-Einstein condensates. It shows experimentally adjustable parameters and obtained immiscible phase that harmonized well with our numerical simulations.
Bibliography
[1] D Allen and D S´en´echal. Spin-1 ladder: A bosonization study. Physical Review B, 61(18):12134, 2000.
[2] Adolfo Avella, Ferdinando Mancini, et al. Strongly Correlated Systems. Springer, 2012.
[3] Saptarshi Biswas, Debasish Banerjee, and Arnab Sen. Scars from protected zero modes and beyond in U (1) quantum link and quantum dimer models. SciPost Phys., 12:148, 2022.
[4] Benedikt Bruognolo. Tensor network techniques for strongly correlated sys- tems simulating the quantum many-body wavefunction in zero, one, and two dimensions, 2017.
[5] Alessia Burchianti, Chiara D’Errico, Sara Rosi, Andrea Simoni, Michele Mod- ugno, Chiara Fort, and Francesco Minardi. Dual-species bose-einstein con- densate of k 41 and rb 87 in a hybrid trap. Physical Review A, 98(6):063616, 2018.
[6] Y-D Chen, W-X Li, Y-T Sun, Q-C Chen, P-Y Chang, and S Tung. Dual-species bose-einstein condensates of li 7 and cs 133. arXiv preprint arXiv:2306.02698, 2023.
[7] Logan W Clark, Anita Gaj, Lei Feng, and Cheng Chin. Collective emis- sion of matter-wave jets from driven bose-einstein condensates. Nature, 551(7680):356–359, 2017.
[8] Michael Creutz, Laurence Jacobs, and Claudio Rebbi. Monte carlo study of abelian lattice gauge theories. Physical Review D, 20(8):1915, 1979.
[9] Thomas A DeGrand and Doug Toussaint. Topological excitations and monte carlo simulation of abelian gauge theory. Physical Review D, 22(10):2478, 1980.
[10] Claudia Eberlein, Stefano Giovanazzi, and Duncan HJ O’Dell. Exact solution of the thomas-fermi equation for a trapped bose-einstein condensate with dipole-dipole interactions. Physical Review A, 71(3):033618, 2005.
[11] Elisa Ercolessi, Paolo Facchi, Giuseppe Magnifico, Saverio Pascazio, and Francesco V Pepe. Phase transitions in z n gauge models: Towards quan- tum simulations of the schwinger-weyl qed. Physical Review D, 98(7):074503, 2018.
[12] Laszl´o Erd˝os, Benjamin Schlein, and Horng-Tzer Yau. Derivation of the gross- pitaevskii equation for the dynamics of bose-einstein condensate. Annals of Mathematics, pages 291–370, 2010.
[13] Condensed Matter Theory ETH Zurich and Metamaterials. Interactions in dilute gases, 2013. Files available from https://ethz.ch/content/ dam/ethz/special-interest/phys/theoretical-physics/cmtm-dam/ documents/qg/Chapter_02.pdf.
[14] Condensed Matter Theory ETH Zurich and Metamaterials. The Gross- Pitaevskii equation, 2013. Files available from https://ethz.ch/content/ dam/ethz/special-interest/phys/theoretical-physics/cmtm-dam/ documents/qg/Chapter_03.pdf.
[15] Paul Fendley. Parafermionic edge zero modes in zn-invariant spin chains. Journal of Statistical Mechanics: Theory and Experiment, 2012(11):P11020, 2012.
[16] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor Software Library for Tensor Network Calculations. SciPost Phys. Codebases, page 4, 2022.
[17] Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. The ITensor Software Library for Tensor Network Calculations. SciPost Phys. Codebases, page 4, 2022.
[18] Eduardo Fradkin. Quantum field theory: an integrated approach. Princeton University Press, 2021.
[19] Eduardo Fradkin and Stephen H Shenker. Phase diagrams of lattice gauge theories with higgs fields. Physical Review D, 19(12):3682, 1979.
[20] Daniel Gonz´alez-Cuadra, Erez Zohar, and J Ignacio Cirac. Quantum simu- lation of the abelian-higgs lattice gauge theory with ultracold atoms. New Journal of Physics, 19(6):063038, 2017.
[21] Johannes Hauschild and Frank Pollmann. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect. Notes, page 5, 2018. Code available from https://github.com/tenpy/tenpy.
[22] Tin-Lun Ho and VB Shenoy. Binary mixtures of bose condensates of alkali atoms. Physical review letters, 77(16):3276, 1996.
[23] K Jansen, J Jersak, CB Lang, T Neuhaus, and G Vones. Phase structure of scalar compact qed. Nuclear Physics B, 265(1):129–144, 1986.
[24] Zhang Jin. Quantum simulation of the abelian higgs lattice gauge theory and quantum thermalization in ultracold-atom systems, 2019.
[25] John Kogut and Leonard Susskind. Hamiltonian formulation of wilson’s lat- tice gauge theories. Physical Review D, 11(2):395, 1975.
[26] Louis Komzsik. The Lanczos method: evolution and application. SIAM, 2003.
[27] Manoranjan Kumar, S Ramasesha, and ZG Soos. Tuning the bond-order wave phase in the half-filled extended hubbard model. Physical Review B, 79(3):035102, 2009.
[28] Tom Lancaster and Stephen J Blundell. Quantum field theory for the gifted amateur. OUP Oxford, 2014.
[29] Lev Davidovich Landau. The classical theory of fields, volume 2. Elsevier, 2013.
[30] Emil Lundh, CJ Pethick, and H Smith. Zero-temperature properties of a trapped bose-condensed gas: Beyond the thomas-fermi approximation. Phys- ical Review A, 55(3):2126, 1997.
[31] Giuseppe Magnifico. Quantum simulation of (1+1)d qed via a zn lattice gauge theory, 2015.
[32] N Manton and P Sutcliffe. Topological solitons, cambridge university, isbn: 9780511617034, 2004.
[33] DJ McCarron, HW Cho, DL Jenkin, MP K¨oppinger, and SL Cornish. Dual- species bose-einstein condensate of rb 87 and cs 133. Physical Review A, 84(1):011603, 2011.
[34] Ian P McCulloch. From density-matrix renormalization group to matrix product states. Journal of Statistical Mechanics: Theory and Experiment, 2007(10):P10014, 2007.
[35] Paulsamy Muruganandam and Sadhan K Adhikari. Fortran programs for the time-dependent gross–pitaevskii equation in a fully anisotropic trap. Com- puter Physics Communications, 180(10):1888–1912, 2009.
[36] Hidetoshi Nishimori and Gerardo Ortiz. Elements of phase transitions and critical phenomena. Oup Oxford, 2010.
[37] Simone Notarnicola, Elisa Ercolessi, Paolo Facchi, Giuseppe Marmo, Saverio Pascazio, and Francesco V Pepe. Discrete abelian gauge theories for quan- tum simulations of qed. Journal of Physics A: Mathematical and Theoretical, 48(30):30FT01, 2015.
[38] Jens Nyhegn, Chia-Min Chung, and Michele Burrello. Z n lattice gauge theory in a ladder geometry. Physical Review Research, 3(1):013133, 2021.
[39] SB Papp, JM Pino, and CE Wieman. Tunable miscibility in a dual-species bose-einstein condensate. Physical review letters, 101(4):040402, 2008.
[40] Michael E Peskin. An introduction to quantum field theory. CRC press, 2018.
[41] J Polo, V Ahufinger, P Mason, S Sridhar, TP Billam, and SA Gardiner. Analy- sis beyond the thomas-fermi approximation of the density profiles of a miscible two-component bose-einstein condensate. Physical Review A, 91(5):053626, 2015.
[42] H Pu and NP Bigelow. Properties of two-species bose condensates. Physical review letters, 80(6):1130, 1998.
[43] Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Luca Tagliacozzo, Gang Su, and Maciej Lewenstein. Tensor network contractions: methods and appli- cations to quantum many-body systems. Springer Nature, 2020.
[44] Subir Sachdev. Quantum phase transitions. Physics world, 12(4):33, 1999.
[45] Anders W. Sandvik. Computational Studies of Quantum Spin Systems. AIP Conference Proceedings, 1297(1):135–338, 11 2010.
[46] Ulrich Schollw¨ock. The density-matrix renormalization group. Reviews of modern physics, 77(1):259, 2005.
[47] Ulrich Schollw¨ock. The density-matrix renormalization group in the age of matrix product states. Annals of Physics, 326(1):96–192, 2011. January 2011 Special Issue.
[48] Torben A Schulze, Torsten Hartmann, Kai K Voges, Matthias W Gempel, Eberhard Tiemann, Alessandro Zenesini, and Silke Ospelkaus. Feshbach spec- troscopy and dual-species bose-einstein condensation of na 23- k 39 mixtures. Physical Review A, 97(2):023623, 2018.
[49] Julian Schwinger, Berthold-Georg Englert, et al. Quantum mechanics: sym- bolism of atomic measurements. Springer, 2001.
[50] Naokazu Shibata and Chisa Hotta. Boundary effects in the density-matrix renormalization group calculation. Physical Review B, 84(11):115116, 2011.
[51] Jan Smit. Introduction to Quantum Fields on a Lattice. Cambridge Lecture Notes in Physics. Cambridge University Press, 2002.
[52] D. S´en´echal. An introduction to bosonization, 1999.
[53] David Tong. Lectures on quantum field theory. Part III Cambridge University Mathematics Tripos, Michaelmas, 2006.
[54] Marek Trippenbach, Krzysztof Goral, Kazimierz Rzazewski, Boris Malomed, and YB Band. Structure of binary bose-einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(19):4017, 2000.
[55] Yu-Chin Tzeng and Min-Fong Yang. Scaling properties of fidelity in the spin-1 anisotropic model. Physical Review A, 77(1):012311, 2008.
[56] Frank Verstraete, Diego Porras, and J Ignacio Cirac. Density matrix renor- malization group and periodic boundary conditions: A quantum information perspective. Physical review letters, 93(22):227205, 2004.
[57] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, St´efan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, I˙lhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antˆonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Na- ture Methods, 17:261–272, 2020.
[58] L Wacker, Nils Byg Jørgensen, D Birkmose, Ridha Horchani, Wolfgang Ert- mer, Carsten Klempt, Nils Winter, Jacob Sherson, and Jan J Arlt. Tunable
dual-species bose-einstein condensates of k 39 and rb 87. Physical Review A, 92(5):053602, 2015.
[59] Brayden Alexander Ware. Tensor network wavefunctions for topological phases, 2017.
[60] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992.
[61] Steven R. White. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B, 48:10345–10356, Oct 1993.
[62] Philippe Widmer. (2+1)d u(1) quantum link and quantum dimer models, 2015.
[63] Kenneth G Wilson. Confinement of quarks. Physical review D, 10(8):2445, 1974.
[64] Luis E Young-S, Paulsamy Muruganandam, Antun Balaˇz, and Sadhan K Adhikari. Openmp fortran programs for solving the time-dependent dipolar gross-pitaevskii equation. Computer Physics Communications, 286:108669, 2023.