簡易檢索 / 詳目顯示

研究生: 林宏彝
Hung-Yi Lin
論文名稱: 奈米加工與加馬射線對矽基材料機械、物理性質之影響
The Effect of Nano Machining and Gamma Ray Irradiation on Mechanical and Physical Properties of Si Materials
指導教授: 李三保
Sanboh Lee
吳東權
Tung Chuan Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 中文
論文頁數: 282
中文關鍵詞: 蕭基二極體奈米加工加馬射線矽基材料黏彈性流動化學應力微拉曼光譜延脆性轉換
外文關鍵詞: Schottky Diode, Nano Machining, Gamma Ray, Si Materials, Viscoelastic Flow, Chemical Stress, Micro Raman Spectrum, Ductile-Brittle Transition
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究單晶矽材料的奈米級延性加工行為、延/脆性轉換機制與非破壞性表面品質檢測方法,其次探討非晶質矽薄膜經過加馬射線照射後,其機械性質、物理性質的改變以及在退火作用下上述兩者的變化,此外,薄膜/基板系統的應力鬆弛現象也在探討之列◦
    單晶矽延/脆性轉換的加工行為首先是在許多實驗中發現,本研究提出之差排堆積模式成功的以差排產生、滑移與堆積以至於成核裂縫的解析方式,解釋此現象的存在,並導出其臨界切深與材料特性以及加工參數之關聯,此外,提出以微拉曼光譜的檢測方法,利用波峰圖形受到材料因加工而導致殘留應力的影響,以致於發生中心值偏移與半高寬變大的現象,成功的建立表面變質層的非破壞性檢測方法,其精確度並透過電子顯微術(E-beam Microscopy)得到驗證◦
    在極低的加工負荷以及較高的環境溫度下,單晶矽材料的形變主要是受到質傳的影響,本研究提出質傳模式,推導分析對於刀具形狀(圓錐、球形)與負荷條件(定壓入速度、定負荷)下,應力場的分佈情形,發現最大液靜壓應力出現在壓子尖端附近,而最大液靜壓應力則等比於壓入速度與施加的負荷,但是反比於原子遷移率,此外,最大液靜壓應力在等壓入速度下等比於壓入面積,在等施加負荷之下,反比於壓入面積。
    此外,本論文探討加馬射線對於非晶質矽薄膜的機械與物理性質的影響,透過奈米壓痕實驗發現非晶質薄膜的硬度與照射劑量成正比,其對應薄膜深度的縱向分佈,成指數函數遞減,在中低劑量( < 600 kGy)下,其硬度增加率大於高劑量( > 600 kGy)的增加率,而其飽和硬度則隨著劑量增加而降低, 飽和硬度並與劑量呈線性關係,其斜率為低劑量( < 600 kGy)大於高劑量( > 600 kGy)。經由傅立葉轉換光譜分析,發現高氫原子配位的矽鍵結(SiH3)受到加馬射線照射後逐漸轉化為低氫原子配位的矽鍵結(SiH),而此過程中產生大量的空懸鍵(Dangling Bond),此空懸鍵為硬度隨著劑量增加的主要因素。透過掠角X-ray的光譜分析,本研究更發現加馬射線在常溫下會增加非晶質矽薄膜的結晶度,並且其結晶度與劑量成正比。
    在受到低溫(< 100oC)退火的作用下,經過加馬射線照射後之非晶質矽薄膜,其表面硬度迅速下降,趨近於其飽和硬度,而其飽和硬度則隨著退火溫度增加而緩慢下降。經過85oC以上溫度退火5分鐘之後,非晶質矽薄膜的硬度與薄膜深度成線性關係,其斜率並與照射劑量成正比。此外,在高溫(> 550oC)退火作用下,受到加馬射線(1000 kGy)照射之非晶質矽薄膜,其結晶度增加率與飽和結晶度皆高於未經照射之非晶質矽薄膜。
    本研究製作非晶質矽薄膜蕭基二極體, 經加馬射線照射後量測其I-V, C-V特性曲線,用以探討加馬射線對於非晶質矽薄膜物理性質(電性)的影響,實驗結果顯示,加馬射線在常溫與低劑量( < 200 kGy)下會改善非晶質矽薄膜蕭基二極體的效能因子(Quality Factor), 但是在高劑量下,其效能因子會漸漸劣化,雖然低溫退火可以改善受到高劑量加馬射線之非晶質矽薄膜蕭基二極體的效能因子,但是無法完成恢復。在高的正向偏壓下, 非晶質矽薄膜蕭基二極體的傳導因子(Conduction Factor)與截斷電壓(Cut-off Voltage)會隨著劑量增加而增加,經過低溫退火後, 傳導因子的值會降至2~3之間, 而截斷電壓則不會隨著低溫退火而降低,反而會朝高劑量的截斷電壓值收斂。此外,非晶質矽薄膜蕭基二極體的整流比(Rectification Ratio)在常溫與低劑量( < 200 kGy)下會增加,但是隨著劑量增加而漸漸降低。
    非晶質矽薄膜蕭基二極體在受到加馬射線照射後,其電容值會隨著劑量增加而降低,其逆向偏壓(Reverse Bias)的截斷電壓會隨著劑量增加而增加,其電容隨著偏壓的增加率與劑量呈指數函數遞減的關係。在低溫退火下,經過低劑量(< 200 kGy)照射之非晶質矽薄膜蕭基二極體的電容值會漸漸增加,當溫度超過75oC時,電容值反而降低,而經過95oC, 5分鐘退火後之二極體,其電容值與未經照射之二極體相比幾乎可以忽略,顯示其蕭基能障已失去作用。
    由於薄膜/基板系統在各式各樣元件製程上應用廣泛,因此,本研究量測不同薄膜/基板厚度比(hf/hs=0.01~0.04)與在不同持溫(100~150oC)條件下,非晶質鍺薄膜/單晶矽基板系統的結構鬆弛現象,實驗結果顯示在低溫(~100oC)與較小的厚度比(~0.01)之下,非晶質鍺薄膜/單晶矽基板系統的結構鬆弛可以運用Maxwell或Kelvin模式來近似,而當溫度增加或是厚度比增加時,由於薄膜/基板系統的正常化的飽和曲率趨近於零, 上述薄膜/基板系統的結構鬆弛現象較為接近Maxwell模式。
    此外,薄膜/基板系統上的薄膜層數與材質因不同製程的需求而有不同的組成,其中薄膜層數為兩層時即所謂三明治結構的系統,如SOI(Semiconductor on Insulator)、磊晶晶圓(Epi Wafer)已被大量使用於半導體元件製程上,由於半導體製程大多伴隨著高溫與化學氣氛,因此,三明治結構內因雜質擴散而導致的化學應力對於元件機械性質的影響已漸受重視,本研究探討兩種擴散起始條件,即定表面濃度源與瞬間表面濃度源,模擬數據顯示,當在瞬間表面濃度源的情形下, 三明治結構系統的外表面附近在擴散開始不久時,會產生極大的應力,此結果暗示在瞬間表面濃度源的情形下,材料會產生機械式的破壞,如差排和微小裂縫等。


    表目錄 表2.1 試片S1, S2, S3, S4, S5 在不同蝕刻時間下, 近似高斯分佈曲線的各項參數值 (A1, A2, α1, α2 , k1, k2和B)。 40 表3.1 fcc晶體結構的壓入平面、線aa 、滑移平面與θS 的對照表。 63 表3.2 bcc晶體結構的壓入平面、線aa 、滑移平面與θS 的對照表。 64 表 5.1 SiH , SiH2, SiH3, 各鍵結群中之Si-H鍵之振動模式頻率。 103 圖目錄 圖2.1. 矽單晶在60℃下, 40重量百分比的氫氧化鉀溶液內蝕刻深度與蝕刻時間的關係。 32 圖2.2(a) 試片S1在不同蝕刻時間(0,1,3,5,10分鐘)下之拉曼光譜變化。 33 圖2.2(b) 試片S2在不同蝕刻時間(0,1,3,5分鐘)下之拉曼光譜變化。 34 圖2.2(c) 試片S3在不同蝕刻時間(0,1,3,5分鐘)下之拉曼光譜變化。 35 圖2.2(d) 試片S4在不同蝕刻時間(0,1,3分鐘)下之拉曼光譜變化。 36 圖2.2(e) 試片S5在不同蝕刻時間(0,5,10,30分鐘)下之拉曼光譜變化。 37 圖2.3 試片S1的拉曼光譜分析圖。實線部份代表最強光帶及其肩部量測值,此圖形可以利用兩個高斯分佈曲線來近似,如虛線所示。 38 圖2.4 試片S1的TEM剖面圖(放大倍率13,600 ),可以觀察到次表面損傷層內有許多差排與疊差分佈。 39 圖3.1 單晶矽材料經過劃線刀具(Ruling Tool)加工後的(111)表面SEM放大照片, 劃線刀具以每轉80nm的進給速度從右上角到左下角延著對角線方向加工,切深從右上角到左下角依次漸增,從加工後試片的表面形貌(morphology)可以看出,右上角是延性區域而左下角是脆性區域。 54 圖3.2 單晶矽表面分別承受上下兩個200mN與400mN的壓痕形貌SEM照片,從圖中可以看出在上面的壓痕附近觀察不到明顯的裂縫,而在下面的壓痕附近觀察到很多裂縫,因此可以判斷臨界切深發生於200mN與400mN之間。 55 圖 3.3 單晶矽在受到壓入負荷時的示意圖,其中契形壓子的尖端角度為2θ,壓入表面為(100)面, 滑移面為(111),其與垂直表面(011)的夾角為35.26。。 56 圖3.4 單晶矽以不同契形壓子壓入下的滑移系統 : (a) θ= 35.26∘(b) θ< 35.26∘(c) θ> 35.26∘。 57 圖 3.5 線aa與a΄a΄的示意圖。 58 圖3.6(a) 對於fcc晶體結構(100)面上之壓痕,在不同的角度ф (0 ~ 45∘)下, 其S值對應半契形角度θ之曲線。 59 圖3.6(b) 對於fcc晶體結構(110)面上之壓痕,在不同的角度ф (0 ~ 90∘)下, 其S值對應半契形角度θ之曲線。 60 圖3.6(c) 對於bcc晶體結構(100)面上之壓痕,在不同的角度ф (0 ~ 45∘)下, 其S值對應半契形角度θ之曲線。 61 圖3.6(d) 對於bcc晶體結構(110)面上之壓痕,在不同的角度ф (0 ~ 90∘)下, 其S值對應半契形角度θ之曲線。 62 圖 4.1(a) 位於具有半徑R之球形壓子下方, 一厚度δ的表面層內之質傳現象示意圖,其中z1, r1分別代表壓痕深度與壓痕半徑。 76 圖 4.1(b) 位於具有半圓錐角θ之圓錐壓子下方, 一厚度δ的表面層內之質傳現象示意圖, 其中z1, r1分別代表壓痕深度與壓痕半徑。 77 圖4.2 液靜壓應力(σh / σmax )與位置(r / r1)關係圖。實線和虛線分別對應球形壓子與圓錐壓子。 78 圖4.3 在定壓入速度下, 最大液靜壓應力與壓痕半徑關係圖。實線和虛線分別對應球形壓子與圓錐壓子。 79 圖4.4 在定壓入負荷下, 最大液靜壓應力與壓痕半徑關係圖。實線和虛線分別對應球形壓子與圓錐壓子。 80 圖4.5 在定壓入速度下, 負荷與壓痕深度關係圖。實線和虛線分別對應球形壓子與圓錐壓子。 81 圖5.1 奈米壓痕分析儀(Hysitron Triboscope + DI SPM)系統架構圖。 96 圖5.2 奈米壓痕分析儀各項量測功能與量測曲線示意圖。 97 圖5.3 以奈米壓痕分析儀量測標準試片(Quartz)在不同負荷(500μN, 1000μN, 1500μN)下之負荷(Load) 對應壓深(Depth)曲線。 98 圖5.4 以奈米壓痕分析儀量測標準試片(Quartz)在不同負荷(2000μN, 2500μN, 3000μN)下之負荷(Load) 對應壓深(Depth)曲線。 99 圖5.5 經過不同劑量加馬射線照射(0~1000 kGy)之非晶質矽薄膜其硬度(Hardness) 對應壓深(Depth)曲線。 100 圖5.6 經過不同劑量加馬射線照射(0~1000 kGy)之非晶質矽薄膜其正常化硬度(Normalized Hardness, H/Hs )對應壓深(Depth)之曲線。 101 圖5.7 經過不同劑量加馬射線照射(0~1000 kGy)之非晶質矽薄膜其飽和硬度(Saturation Hardness)對應劑量(Dose)之曲線。 102 圖5.8 經過不同加馬射線劑量照射(0~1000 kGy)之非晶質矽薄膜其FTIR吸收光譜(600 ~ 4500cm-1) 。 104 圖5.9 經過不同劑量照射(0~1000 kGy)之非晶質矽薄膜其對應於SiH3波峰(907 cm-1)之FTIR吸收光譜。 105 圖5.10 經過不同劑量加馬射線照射(0~1000 kGy)之非晶質矽薄膜其對應於SiH波峰(2000 cm-1)之FTIR吸收光譜。 106 圖5.11不同劑量加馬射線照射(0~1000 kGy)之非晶質矽薄膜經過65oC 5min之退火後其硬度(Hardness)對應壓深(Depth)之曲線。 107 圖5.12不同劑量加馬射線照射(0~1000 kGy)之非晶質矽薄膜經過75oC 5min之退火後其硬度(Hardness)對應壓深(Depth)曲線。 108 圖5.13不同加馬射線劑量照射(0~1000 kGy)之非晶質矽薄膜經過85oC 5min之退火後其硬度(Hardness)對應壓深(Depth)曲線。 109 圖5.14不同加馬射線劑量照射(0~1000 kGy)之非晶質矽薄膜經過95oC 5min之退火後其硬度(Hardness)對應壓深(Depth)曲線。 110 圖5.15 不同加馬射線劑量照射(0~1000 kGy)之非晶質矽薄膜經過65,75,85,95oC 5min四種不同之退火程序後其飽和硬度(Saturation Hardness)對應劑量(Dose)曲線。 111 圖5.16未經照射之非晶質矽薄膜其掠角(Grazing Angle)X-ray繞射光譜。112 圖5.17 經過200 kGy加馬射線照射之非晶質矽薄膜其掠角(Grazing Angle) X-ray繞射光譜。 113 圖5.18 經過400 kGy加馬射線照射之非晶質矽薄膜其掠角(Grazing Angle)X-ray繞射光譜。 114 圖5.19 經過600 kGy加馬射線照射之非晶質矽薄膜其掠角(Grazing Angle)X-ray繞射光譜。 115 圖5.20 經過800 kGy加馬射線照射之非晶質矽薄膜其掠角(Grazing Angle)X-ray繞射光譜。 116 圖5.21 經過1000 kGy加馬射線照射之非晶質矽薄膜其掠角(Grazing Angle)X-ray繞射光譜。 117 圖5.22 不同劑量加馬射線照射之非晶質矽薄膜其掠角(Grazing Angle)X-ray繞射光譜中對應於矽結晶(2θo = 26.48o )之峰值對應劑量曲線。 118 圖5.23 未經照射與受到劑量1000 kGy加馬射線照射之非晶質矽薄膜經過550oC 1小時之退火程序後其掠角(Grazing Angle)X-ray繞射光譜之比較。119 圖5.24未經照射與受到劑量1000 kGy加馬射線照射之非晶質矽薄膜經過600oC 0.5小時之退火程序後其掠角(Grazing Angle)X-ray繞射光譜之比較。 120 圖5.25未經照射與受到劑量1000 kGy加馬射線照射之非晶質矽薄膜經過600oC 1小時之退火程序後其掠角(Grazing Angle)X-ray繞射光譜之比較。 121 圖5.26未經照射與受到劑量1000 kGy加馬射線照射之非晶質矽薄膜經過600oC 2小時之退火程序後其掠角(Grazing Angle)X-ray繞射光譜之比較。 123 圖5.27未經照射與受到劑量1000 kGy加馬射線照射之非晶質矽薄膜經過600oC 0~2小時之退火程序後其矽結晶(2θo = 26.48o )之峰值對應退火時間曲線。 124 圖5.28 以AFM檢測非晶質矽薄膜(As-deposited)表面形貌(morphology), 可以觀察到其結構為顆粒狀的原子團所組成。 125 圖5.29 未經照射之非晶質矽薄膜(As-deposited),以550oC的溫度退火0.5小 時後的表面形貌(morphology)。 126 圖5.30 經1000 kGy加馬射線照射之非晶質矽薄膜,以550oC的溫度退火0.5小 時後的表面形貌(morphology),可以發現其上有許多小氣泡。 126 圖5.31未經照射之非晶質矽薄膜(As-deposited),以600oC的溫度退火0.5小 時後的表面形貌(morphology),可以發現其上有許多小氣泡已破裂。 128 圖5.32 經1000 kGy加馬射線照射之非晶質矽薄膜,以600oC的溫度退火0.5小時後的表面形貌(morphology),可以發現氣泡的生成反應劇烈。 128 圖5.33 以SEM觀察非晶質矽薄膜(As-deposited)表面形貌(morphology),可以清楚辨別其結構為顆粒狀的原子團所組成。 129 圖5.34 以SEM觀察非晶質矽薄膜(As-deposited), 以550oC的溫度退火0.5小 時後的表面形貌(morphology),可以觀察到顆粒狀的原子團開始合併(Merge) 。 130 圖5.35 以SEM觀察非晶質矽薄膜(As-deposited), 以600oC的溫度退火0.5小 時後的表面形貌(morphology),表面形貌(morphology),部份顆粒狀的原子團已合併在一起。 131 圖5.36以SEM觀察經過1000 kGy加馬射線照射過之非晶質矽薄膜,以550oC的溫度退火0.5小時後的表面形貌(morphology),大部份顆粒狀的原子團已合併在一起,其間的界限已模糊。 132 圖5.37以SEM觀察經過1000 kGy加馬射線照射過之非晶質矽薄膜,以600oC的溫度退火0.5小時後的表面形貌(morphology),大部份顆粒狀的原子團已合併在一起並且已形成緻密的薄膜。 133 圖6.1. 經過不同劑量照射之非晶質矽蕭基二極體在室溫下的J-V曲線◦ 154 圖6.2. 經過不同劑量照射之非晶質矽蕭基二極體在65oC退火5分鐘下的J-V曲線 ◦ 154 圖6.3. 經過不同劑量照射之非晶質矽蕭基二極體在75oC退火5分鐘下的J-V曲線◦ 155 圖6.4. 經過不同劑量照射之非晶質矽蕭基二極體在85oC退火5分鐘下的J-V曲線◦ 155 圖6.5. 經過不同劑量照射之非晶質矽蕭基二極體在95oC退火5分鐘下的J-V曲線◦ 156 圖6.6. 非晶質矽蕭基二極體在65oC退火5分鐘下的J-V曲線,紅色部份為實驗數據fitting的曲線( fitting方程式為J=P1+P2*(V-P3)^P4, P4 = α)◦ 157 圖6.7 經過不同劑量照射之非晶質矽蕭基二極體在照射完及各種溫度(65,75,85,95oC)下退火5分鐘後之高電流起始電壓(Cut-off Voltage)變化曲線◦ 158 圖6.8. 經過不同劑量照射之非晶質矽蕭基二極體在65,75,85,95oC退火5分鐘下的α值變化情形◦ 159 圖6.9. 常溫下非晶質矽蕭基二極體在小的順向電壓下對於log J v.s. V 作線性回歸,紅色直線的斜率代表( q / nkT ) ◦ 160 圖6.10. 經過不同劑量照射之非晶質矽蕭基二極體在常溫下的J-V曲線◦ 161 圖6.11. 經過不同劑量照射之非晶質矽蕭基二極體在65oC退火5分鐘下的J-V曲線◦ 161 圖6.12. 經過不同劑量照射之非晶質矽蕭基二極體在75oC退火5分鐘下的J-V曲線◦ 162 圖6.13. 經過不同劑量照射之非晶質矽蕭基二極體在85oC退火5分鐘下的J-V曲線◦ 162 圖6.14. 經過不同劑量照射之非晶質矽蕭基二極體在95oC退火5分鐘下的J-V曲線◦ 163 圖6.15 不同劑量照射之非晶質矽蕭基二極體在65,75,85,95oC退火5分鐘下 Quality Factor (n)的變化◦ 163 圖6.16. 各種劑量照射之非晶質矽蕭基二極體在逆向偏壓下的J-V曲線◦ 164 圖6.17. 各種劑量之非晶質矽蕭基二極體經過65oC 5min.之退火後逆向偏壓J-V曲線◦ 164 圖6.18. 各種劑量之非晶質矽蕭基二極體經過75oC 5min.之退火後逆向偏壓J-V曲線◦ 165 圖6.19. 各種劑量之非晶質矽蕭基二極體經過85oC 5min.退火後逆向偏壓J-V曲線◦ 165 圖6.20. 各種劑量之非晶質矽蕭基二極體經過95oC 5min.退火後逆向偏壓J-V曲線◦ 166 圖6.21. 各種劑量照射之非晶質矽蕭基二極體整流比對電壓曲線◦ 166 圖6.22. 各種劑量之非晶質矽蕭基二極體經過65oC 5min.退火後整流比對電壓曲線◦ 167 圖6.23. 各種劑量之非晶質矽蕭基二極體經過75oC 5min.退火後整流比對電壓曲線◦ 167 圖6.24. 各種劑量之非晶質矽蕭基二極體經過85oC 5min.退火後整流比對電壓曲線◦ 168 圖6.25. 各種劑量之非晶質矽蕭基二極體經過95oC 5min.退火後整流比對電壓曲線◦ 168 圖6.26. 各種劑量照射之非晶質矽蕭基二極體在室溫下之C-V曲線◦ 169 圖6.27. 各種劑量照射之非晶質矽蕭基二極體經過65oC 5min.退火後之C-V曲線◦ 169 圖6.28. 各種劑量照射之非晶質矽蕭基二極體經過75oC 5min.退火後之C-V曲 線◦ 170 圖6.29. 各種劑量照射之非晶質矽蕭基二極體經過85oC 5min.退火後之C-V曲 線◦ 171 圖6.30. 各種劑量照射之非晶質矽蕭基二極體經過95oC 5min.退火後之C-V曲 線◦ 172 圖6.31 各種劑量照射之非晶質矽蕭基二極體在照射完與經過不同溫度(65.75.85.95oC 5min.)退火後之∂C/∂V(0 ~ -0.7V)對劑量之曲線◦ 173 圖6.32. 各種劑量照射之非晶質矽蕭基二極體在室溫下 ∂C/∂V (0~-0.7V)對劑量之曲線◦ 174 圖6.33. 各種劑量照射之非晶質矽蕭基二極體經65oC 5min.退火後之∂C/∂V (0 ~-0.7V) 與劑量之關係◦ 174 圖6.34. 各種劑量照射之非晶質矽蕭基二極體經75oC 5min.退火後之∂C/∂V (0 ~-0.7V) 與劑量之關係◦ 175 圖6.35. 各種劑量照射之非晶質矽蕭基二極體經85oC 5min.退火後之∂C/∂V (0 ~-0.7V) 與劑量之關係◦ 175 圖6.36. 各種劑量照射之非晶質矽蕭基二極體經過95oC 5min.退火後之∂C/∂V (0 ~-0.7V) 與劑量之關係◦ 176 圖6.37. 各種劑量照射之非晶質矽蕭基二極體在照射完與經過不同溫度(65.75.85.95oC 5min.)退火後之∂C/∂V (-0.7V~-1V)對劑量之關係◦ 176 圖6.38. 各種劑量照射之非晶質矽蕭基二極體在室溫下 ∂C/∂V (-0.7V~-1V)對劑量之關係◦ 177 圖6.39. 各種劑量照射之非晶質矽蕭基二極體經過65oC 5min.退火後之∂C/∂V (-0.7V~-1V)對劑量之關係◦ 177 圖6.40. 各種劑量照射之非晶質矽蕭基二極體經過75oC 5min.退火後之∂C/∂V (-0.7V~-1V)對劑量之關係◦ 178 圖6.41. 各種劑量照射之非晶質矽蕭基二極體經過85oC 5min.退火後之∂C/∂V (-0.7V~-1V)對劑量之關係◦ 178 圖6.42. 各種劑量照射之非晶質矽蕭基二極體經過95oC 5min.退火後之∂C/∂V (-0.7V~-1V)對劑量之關係◦ 179 圖6.43. 各種劑量照射之非晶質矽蕭基二極體照射完與經過(65,75,85,95oC 5min.)退火後之起始電壓(Cut-off Voltage)與劑量之關係◦ 179 圖7.1. 在不同溫度下,厚度比0.01之非晶鍺薄膜/單晶矽基板退火時間與曲率變化關係圖。 192 圖7.2. 在不同溫度下,厚度比0.02之非晶鍺薄膜/單晶矽基板退火時間與曲率變化關係圖。 193 圖7.3 在不同溫度下,厚度比0.04之非晶鍺薄膜/單晶矽基板退火時間與曲率變化關係圖。 194 圖7.4 在100oC溫度下,不同厚度比之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖。 195 圖7.5 在125oC溫度下,不同厚度比之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖。 196 圖7.6 在150 oC溫度下,不同厚度比之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖。 197 圖7.7 在100 oC溫度下,厚度比0.01之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 198 圖7.8 在100 oC溫度下,厚度比0.02之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 199 圖7.9 在100 oC溫度下,厚度比0.04之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 200 圖7.10 在125 oC溫度下,厚度比0.01之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 201 圖7.11 在125 oC溫度下,厚度比0.02之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 202 圖7.12 在125 oC溫度下,厚度比0.04之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 203 圖7.13 在150 oC溫度下,厚度比0.01之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 204 圖7.14 在150 oC溫度下,厚度比0.02之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 205 圖7.15 在150 oC溫度下,厚度比0.04之非晶鍺薄膜/單晶矽基板退火時間與正常化曲率變化關係圖, 並以Maxwell模式作模擬近似(黑線)。 206 圖7.16 在100, 125, 150 oC退火溫度下,厚度比0.01, 0.02, 0.04之非晶鍺薄膜/單晶矽基板系統應力鬆弛曲線以Maxwell模式作模擬近似所得之黏滯係數與厚度比之關聯。 207 圖7.17 非晶質鍺薄膜在室溫下,退火處理後(150 oC 30分鐘與 550 oC 1小時), 其掠角x-ray繞射圖譜。 208 圖A.1 (a)薄膜受張應力 (b)薄膜受壓應力 220 圖A.2 雷射掃描示意圖 221 圖A.3 In-situ Curvature 儀器示意圖 224 圖 B.1 兩種描述黏彈性的機械模式: Kelvin (a)和 Maxwell (b) 229 圖B.2 對於一特定黏彈性薄膜/彈性基板系統(Bf/Bs=0.7,ν=0.1),在不同的薄膜/基板厚度比下,正常化薄膜曲率對應正常化時間的關係(Kelvin 模式)。 230 圖B.3 對於一特定黏彈性薄膜/彈性基板系統(Bf/Bs=0.7,ν=0.1),在不同的薄膜/基板厚度比下,正常化薄膜曲率對應正常化時間的關係(Maxwell 模式)。 231 圖C.1 一個薄層A被兩層具有不同化學成份而且在Y方向長度為半無限長的層B夾於中間的示意圖。 243 圖C.2(a) 對於定表面濃度與δ/αo = 10 時, A層中在不同時間下的濃度分佈曲線。 244 圖C.2(b) 對於定表面濃度與δ= 100 時, A層中在不同αo值下的濃度分佈曲線。 245 圖C.2(c) 對於定表面濃度與αo = 50時, A層中在不同δ/αo值下的濃度分佈曲線。 246 圖C.3(a) 對於瞬間表面濃度與δ/αo = 10時, A層中在不同時間下的濃度分佈曲線。 247 圖C.3(b) 對於瞬間表面濃度與δ = 100時, A層中在不同αo值下的濃度分佈曲線。 248 圖C.3(c) 對於瞬間表面濃度與αo = 50時, A層中在不同δ/αo值下的濃度分佈曲線。 249 圖C.4(a) 對於定表面濃度與δ/αo = 10時, A層中在不同時間下的應力分佈曲線。 250 圖C.4(b) 對於定表面濃度與δ=100時, A層中在不同αo值下的應力分佈曲線。 251 圖C.4(c) 對於定表面濃度與αo = 50時, A層中在不同δ/αo值下的應力分佈曲線。 252 目錄 第一章 緒論 1.1單晶矽材料加工變質層的微拉曼光譜檢測方法……2 1.2 單晶矽材料加工時的延脆性轉換現象………………3 1.3硬脆材料在極小負荷下的質傳為 ……………………4 1.4加馬射線對非晶質矽薄膜物理性質(電性)之影響 …7 1.4.1非晶質矽薄膜蕭基二極體 ………………………………7 1.4.2可見光對非晶質矽薄膜光電特性的影響 ………………8 1.4.3加馬射線與高能粒子對非晶質矽薄膜光電特性的影響 ……………………………………………………………11 1.5加馬射線對非晶質矽薄膜機械性質的影響…………16 1.5.1 加馬射線導致非晶質矽薄膜結構鬆弛的效……………16 1.5.2 加馬射線對非晶質矽薄膜的硬度與結晶度的影響……17 1.6 薄膜基板系統的黏彈性行為 ………………………18 1.7 三明治結構中因擴散引發之化學應力 ……………20 1.8 本論文之研究主題 ………………………………23 第二章 矽晶圓加工後變質層(Damage Layer)分析 2.1 微拉曼光譜(非彈性散射)檢測與應用 ………………26 2.2 試片準備與實驗過程 …………………………………27 2.3 加工後變質層對微拉曼光譜波型之改變與分析 ……28 2.4 TEM觀察變質層深度 …………………………………30 2.5 結論 …………………………………………………31 附圖 第三章 單晶矽材料延/脆性轉換機制分析--- 壓痕模式 3.1延/脆性轉換與奈米壓痕之關聯………………………42 3.2. 延/脆性轉換分析 ……………………………………43 3.2.1 差排堆積(Dislocation Pile-ups)模式…………………43 3.2.2 壓痕深度的影響……………………………………………45 3.2.3 延/脆性轉換準則 …………………………………………46 3.3 微加工模擬(Micromachining Modeling)……………46 3.4 S函數……………………………………………………48 3.4.1 S函數的推導 ……………………………………………48 3.4.2 S函數的數值結果 ………………………………………50 3.5 結論 ……………………………………………………52 附圖 第四章 以應力引發液靜壓質傳模式檢測高溫下超微小應力壓痕 4.1 應力引發液靜壓質傳模式 ……………………………65 4.2 壓子形狀對質傳現象的影響 …………………………66 4.2.1 球形壓子 …………………………………………………68 4.2.2 圓錐壓子 …………………………………………………70 4.3 液靜壓應力分佈與負荷速率.壓痕面積以及壓子形狀的關聯 ……………………………………………………73 4.4 結論 ……………………………………………………74 附圖 第五章 加馬射線對非晶質矽薄膜機械性質的影響 5.1 實驗過程 ………………………………………………83 5.2 加馬射線對非晶質矽薄膜硬度與鍵結特性的影響 …86 5.3 退火溫度對非晶質矽薄膜硬度的影響 ………………89 5.4 加馬射線對非晶質矽薄膜常溫結晶度與高溫退火結晶度的影響 ………………………………………………90 5.5 結論 ……………………………………………………94 附圖 第六章 加馬射線對非晶質矽薄膜元件特性之影響 6.1 非晶質矽薄膜蕭基二極體……………………………134 6.2 實驗過程………………………………………………135 6.3 結果與討論……………………………………………136 6.3.1加馬射線對非晶質矽薄膜蕭基二極體J-V特性曲線的影響………………………………………136 6.3.2加馬射線對非晶質矽薄膜蕭基二極體C-V特性的影響……………………………………………147 6.4 結論 …………………………………………………152 附圖 第七章 薄膜基板系統的黏滯流動與結構鬆弛 7.1 非晶質材料的黏滯流動………………………………180 7.2 實驗過程………………………………………………182 7.3 分析方法………………………………………………184 7.4 結果與討論……………………………………………190 7.5 結論……………………………………………………191 附圖 第八章 總結與未來展望……………………………………209 附錄 A薄膜應力與曲率量測系統…………………………217 附錄 B 黏滯流動模式………………………………………225 附錄 C 介面層擴散所引發之化學應力……………………232 參考文獻 …………………………………………………253

    參考文獻

    [1] Scott, J.F., and Pouligny, B., 1988, ”Raman spectroscopy of submicron KNO3 films. II. Fatigue and space-charge effects“, J. Appl. Phys. 64, pp.1547-1553.
    [2] Dearaujo, C.A.P., McMillan, L.D., Melnik, B.M., Cuchiaro, J.D. and Scott, J.F., 1990, ““Ferroelectric Memories “, Ferroelectrics, 104, pp.241-256.
    [3] McKeown, P.A., 1987, “The Role of Precision Engineering in Manufacturing of the Future “, Annals of CIRP 36(2), pp.495-501.
    [4] Taniguguchi, N., 1983, “Current Status in, and Future Trends of Ultraprecision Machining and Ultrafine Materials Processing”, Annals of CIRP 32(20), pp.573 -582.
    [5] Bismayer, U., Brinksmerier, E., Guttler, B., Seibt, H. and Menz, C., 1994, “Measurement of Subsurface Damage in Silicon Wafers”, Precis. Eng., 16(2), pp. 139-144.
    [6] Hashimoto, H., Itoh, H., Eda, H. and Kishi, K., 1984, “Formation Mechanism of
    Ultraprecision Machined Surfaces with a Single Point Diamond Tool”, Proc. Int.
    Conf. Prod. Eng., 5, pp. 603-611.
    [7] Cardona, M., 1987, “Raman Spectroscopy Applied to the Characterization of
    Semiconductors and semiconductor structures”, Proc. SPIE, 822, pp.2-15.
    [8] Sparks, R.G. and Paesler, M.A. , 1992, “ Depth profiling of residual stress along interrupted test cuts in machined germanium crystals”, J. Appl. Phys. , 71, pp.891-897.
    [9] Verhey, J., Bismayer, U., Guttler, B. and Lundt, H., 1994, “The Surface of
    Machined Silicon Wafers: a Raman Spectroscopic Study”, Semicond. Sci.
    Technol. 9, pp. 404-408.
    [10] Brinksmeier, E., 1989, “State-of-the-art of Non-destructive Measurement of Sub-surface Material Properties and Damages”, Precis. Eng.,11(4), pp.211-224.
    [11] Johansson, S. and Schweitz, J.A., 1988, “Contact Damage in Single-Crystalline Silicon Investigated by Cross-Sectional Transmission Electron Microscopy “, J. Am. Ceram. Soc., 71(8), pp. 617-623.
    [12] Sparks, R.G. and Paesler, M.A., 1988, “Micro-Raman Analysis of Stress in Machined Silicon and Germanium”, Precis. Eng., 10(4), pp. 191-198.
    [13] Tonshoff, H.K., Schmieden, W.V., Inasaki, I., Konig, W., and Spur, G., 1990, “Abrasive Machining of Silicon”, Annals of CIRP, 39(2), pp. 621-635.
    [14] Nemanish, R.J., 1986, “Raman Spectroscopy for Semiconductor Thin Film Analysis”, Mater. Res. Soc. Sym. Proc. in Materials Characterization, edited by N.W. Cheung and Nicolet M-A., 69, Pittsburg, PA, p.23-37.
    [15] Contreras, G., Sood, A.K., Cardona, M., and Campaan, A., 1984, “Effect of Free Carriers on The Raman Frequency of Ultraheavily Doped n-Si “, Solid State Commun. 49(4), pp. 303-305.
    [16] Fauchet, P.M. and Campbell, I.H., 1988, “Raman Spectroscopy of Low- Dimensional Semiconductors”, CRC Crit. Rev. Solid State Mater. Sci., 14, pp. S79-S101.
    [17] Anastrassakis, E., Pinezuk, A., Burstein, E., Pollak, F.H., and Cardona, M., 1970, “Effect of Static Uniaxial Stress on the Raman Spectrum of Silicon”, Solid State Commun., 8, pp.133-138.
    [18] Cerdeira, F., Buchenauer, C., Pollak, F., and Cardona, M., 1972, “Stress-Induced Shifts of First-order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors”, Phys. Rev. B, 5(2), pp.580-593.
    [19] Warren, P.D., Kolosov, O.V., Roberts, S.G., and Briggs, G.A.D., 1996, “Characterisation of Surface Damage via Contact Probes”, Nanotechnology, 7, pp.288-294.
    [20] Brinksmerier, E., 1989, “State-of-the-art of Non-destructive Measurement of Sub-surface Material Properties and Damages”, Precis. Eng., 11(4), pp. 211-224.
    [21] Wu, T. C., Morita N., and Yoshida, Y., 1992, “Study on the Ductile Mode Grinding of Silicon Single Crystal: The Effect on the Grinding Surface by a Truncated Wheel”, The American Society of Mechanical Engineers, PD Vol.47 (6), pp.71~ 76.
    [22] Broek, D., 1986, “Elementary Engineering Fracture Mechanics”, 4th ed., Martinus Nijhoff Publishers, Boston, MA, Chap.2, pp.11.
    [23] Khantha, M., Pope, D. P., and Vitek, V., 1994, “Dislocation Screening and Brittle-to-Ductile Transition: a Kosterlitz-Thouless type instability”, Physical Review Letter, 73(5), pp.684-687.
    [24] Khantha, M., 1994, “The Brittle-To-Ductile Transition II: Dislocation Dynamics and the Strain-rate Dependence of the Transition Temperature”, Scripta Metall. Mater., 31(10), pp.1355-1360.
    [25] Roberts, S.G., Ellis, M. and Hirsch, P. B., 1993, “Dislocation Dynamics and Brittle-to-ductile Transitions”, Mater. Sci. Eng., A164, pp.135-140.
    [26] Roberts, S.G., Booth, A.S., and Hirsch, P. B., 1994, “Dislocation Activity and Brittle-ductile Transition in Single Crystals”, Mater. Sci. Eng., A176, pp. 91-98.
    [27] Hirsch, P. B., and Roberts, S.G., 1996, “Comment on the Brittle-To-Ductile Transition: A Cooperative Dislocation Generation Instability; Dislocation Dynamics and the Strain-rate Depence of the Transition Temperature”, Acta Metall. Mater., 44(6), pp. 2361-2371.
    [28] Rice, J.R. and Thomson, R., 1974, “Ductile versus Brittle Behavior of Crystals”, Phil. Mag., 29, pp.73-97.
    [29] Zhang, T.Y., 1990, “Computer Simulation of Semibrittle Fracture”, Z. Metallkd, 81, pp. 63-69.
    [30] Ohr, S.M., and Chang, S.J., S.M., 1982, “Dislocation-free Zone Model of Fracture Comparison with Experiments”, J. Appl. Phys., 53, pp.5645.
    [31] Shiue, S.T. and Lee, S., 1990, “The Dislocation-free Zone Model of Mode-III Fracture: A Discrete Dislocation Approach”, Phil. Mag. A, 61(1), pp. 85-97.
    [32] Lee, S., 1997, “Fundamentals of Mode III Fracture: A Discrete Dislocation Simulation Approach”, Key Eng. Mater., 145-149, pp.135-144.
    [33] Huang, C.C., Yu, C.C., and Lee, S., 1995, “The Behavior of Screw Dislocations Dynamically Emitted from the Tip of a Surface Crack during Loading and Unloading”, J. mater. Res., 10(1), pp. 183.
    [34] Nakasuji, T., Kodera, S., Hara, S., Matsunaga, H., Ikawa, N., and Shimada, S., 1990, “Diamond Turning of Brittle Materials for Optical Components”, Annals of CIRP, 39(1), pp.89-92.
    [35] Shimada, S., Ikawa, N., Inamura, T., Takezawa, N., Omori, H., and Sata, T., 1995, “Brittle-Ductile Transition Phenomena in Microindentation and Micromachining”, Annals of CIRP, 44(1), pp.523-526.
    [36] Inamura, T., Shimada, S., Takezawa, N. and Nakahara, N., 1997, “Brittle/Ductile Transition Phenomena Observed in Computer Simulations of Machining Defect-Free Monocrystalline Silicon”, Annals of CIRP, 46(1), pp. 31-34.
    [37] Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F. and Hockey, B.J., 1988, “Amorphization and conductivity of silicon and germanium induced by indentation”, Phys. Rev. Lett., 60, pp.2156-2159.
    [38] Pharr, G.M., Oliver, W.C. and Harding, D.S., 1991, “New Evidence for a
    Pressure-induced Phase Transformation during the Indentation of Silicon”, J.
    Mater. Res., 6(6), pp. 1129.
    [39] Weertman, J. and Weertman, J.R., 1964, “Elementary Dislocation Theory”,
    Macmillan, New York, p.129.
    [40] Stroh, A.N., 1957, “A Theory of the Fracture of Metals”, Advanced in Physics, 6, pp.418-465.
    [41] Venkataraman, S.K., Kohlstedt, D. L., and Gerberich, W.W., 1993, “Continuous Microindentation of Passivating Surfaces”, J. Mater. Res., 8(4), pp. 685-688.
    [42] Venkataraman, S.K., Huang, H.E., Kohlstedt, D. L., and Gerberich, W.W., 1993, “Continuous Microindentation of Passivated Surfaces in Surface Active Media”, Mat. Res. Soc. Symp. Proc., 308, pp. 543-548.
    [43] Mencik, J., Swain, M.V., 1995, “Mechanical Properties of Platium Films on Silicon and Glass Determined by Ultra-microindentation”, Mat. Res. Soc. Symp. Proc., 356, pp. 729-734.
    [44] Trundle, A., and White, D., 1996 “Nanoindentation and microindentation of Weathered Unplasticised Poly-vinyl Chloride (UPVC)”, J. mater. Sci., 31, pp. 4189-4198.
    [45] Trindade, A.C., Cavaleiro, A., and Fernandes, J.V., 1994, “Estimation of Young’s Modulus and of Hardness by Ultra-low Load Hardness Tests with a Vickers Indenter”, J. Testing Eval., 22(4), pp. 365-369.
    [46] Desaeger, M., and Verpoest, I., 1993, “On the Use of Micro-indentation Test Technique to Measure the Interfacial Shear Strength of Fibre-reinforced Polymer Composites”, Composites Sci. Technol., 48, pp. 215-226.
    [47] Blau, P.J., Keiser, J.R., and Jackson, R.L., 1993, “A Comparison of Three Microindentation Hardness Scales at Low and Ultralow Loads”, Mater. Characterization, 30, pp. 287-293.
    [48] Misawa, G., Yamada, H., Seino, Y., and Nakayama, K., 1996, “Atomic Force Microscopy of Cracks on Si(100) and GaAs(100) Caused by Vickers Indenter”, Jpa. J. Appl. Phys., 35, part1, No. 6B, pp.3778-3782.
    [49] Chien, F.R., Ning, X.J., and Heuer, A.H., 1996, “Slip Systems and Dislocation Emission from Crack Tips in Single Crystal TiC at Low Temperatures”, Acta Mater., 44(6), pp. 2265-2283.
    [50] Mencik, J., and Swain, M.V., 1994, “Micro-Indentation Tests with Pointed Indenters”, Mater. Forum, 18, pp. 277-288.
    [51] Harvey, S., Huang, H., Venkataramam, S., and Gerberich, W.W., 1993, “Microscopy and Microindentation Mechanics of Single Crystal Fe- 3 wt% Si: Part I. Atomic Force Microscopy of a Small Indentation”, J. Mater. Res., 8(6), pp. 1291-1299.
    [52] Zielinski, W., Huang, H., and Gerberich, W.W., 1993, “Microscopy and Microindentation Mechanics of Single Crystal Fe- 3 wt% Si: Part II. TEM of the Indentation Plastic Zone”, J. Mater.Res., 8(6), pp. 1300-1310.
    [53] Dieter, G.E., 1988, “Mechanical Metallurgy “, 3rd ed., McGraw-Hill, New York, Chapter 4 and 7.
    [54] Rice, J.M., and Chuang, T.J., 1981, “Energy Variations in Diffusive Cavity Growth”, J. Am. Ceram. Soc., 64(1), pp. 46- 53.
    [55] Chuang, T.-J. , 1982, “A Diffusive Crack-Growth Model for Creep Fracture”, J. Am. Ceram. Soc., 65(2), pp. 93 -103.
    [56] Chuang, T.-J. Chu, J.L., and Lee, S., 1992, “Asymmetric Tip Morphology of Creep Microcracks Growing Along Bimaterial Interfaces”, Acta Metall. Mater., 40(10), pp. 2683-2691.
    [57] Chuang, T.-J., Chu, J. L., and Lee, S., 1996, “Diffusive Crack Growh at a Bimaterial Interface”, ASME J. Appl. Mech., 63, pp.796-803.
    [58] Hirth, J.P., and Lothe, J., 1968, “Theory of Dislocations”, McGraw-Hill, New York, pp.353.
    [59] Nabarro, F.R.N., 1967, “Theory of Crystal Dislocations”, Oxford University Press, Oxford,England, p.231.
    [60] Herring, C., in: Kingston, W.E. (Ed.), 1951, “The Physics of Powder Metallury”, McGraw-Hill, New York, pp.153.
    [61] Herring, C., in: Gomer, R., Smith, C.S. (Eds.), 1953, “Structure and Properties of Solid Surfaces”, University of Chicago Press., Chicago, IL, pp.5.
    [62] Tabor, D., 1951, “The Hardness of Metals”, Clarendon Press, Oxford.
    [63] Bhushan, B., and Li, X., 1997, “Micromechanical and Tribological Characterization of Doped Single-crystal Silicon and Polysilicon Films for Microelectromechanical Systems Devices”, J. Mater. Res., 12(1), pp. 54-63.
    [64] Morris, J. C., and Callahan, D.L., 1994, “Origins of Microplasticity in Low-load Scratching of Silicon”, J. Mater. Res., 9(11), pp. 2907-2913.
    [65] Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R., 1992, “Electrical Resistance of Metallic Contacts on Silicon and Germanium during Indentation”, J. Mater. Res., 7(4), pp. 961-972.
    [66] Chen, I. and Lee, S., 1982, “On the Current-Voltage Characteristics of Amorphous Hydrogenated Silicon Schottky Diodes”, J. Appl. Phys., 53(2), pp.1045-1051.
    [67] Wronski, C.R., Calson, D.E. and Daniel, R.E., 1976, “Schottky-Barrier Characteristics of Metal-amorphous Silicon Diodes”, Appl. Phys. Lett., 29(9), 602-604.
    [68] Gibbson, R.A., Spear, W.E., Lecomber, P.G. and Snell, A.J., 1980, “Recent Developments in Amorphous Silicon p-n Junction Devices”, J. Non-Cryst. Solids, 35&36, pp. 725-730.
    [69] Gibson, R.A., Le Comber, P.G., and Spear, W.E., 1980, “The characteristics of high current amorphous silicon diodes”, Appl. Phys., 21, pp.307-311.
    [70] Yamamoto, Y., and Miyanaga, H., 1990, “An Ananlysis of Positive and Negative Resistance Characteristics in the High-Current-Density Region of Schottky Diodes”, IEEE Transaction on Electron Devices, 37(5), pp.1364 -1372.
    [71] Chen, I. and Lee, S., 1982, “Calculation of Capacitance-Voltage Characteristics of Hydrogenated Amorphous Silicon Schottky Diodes”, Appl. Phys. Lett., 40(6), pp.487-489.
    [72] Snell, A.J., Mackenzie, K.D., LeComber, P.G. and Spear, W.E., 1980, “The Metal- Amorphous Silicon Barrier, Interpretation of Capacitance and Conductance Measurements”, J. of Non-Cryst. Solids, 35&36, pp. 593-598.
    [73] Shur, M., Czubatyj, W. and Madan, A., 1980, “Determination of Depletion Width in Amorphous Materials Using a Simple Analysis Model”, Solar Energy Materials, 2, pp.349-360.
    [74] Hendrik, M., W., and Crans W., 1989, “Determination of the Electric Field at Interfaces in Amorphous-Silicon Devices Using Time-of-Flight Measurements”, IEEE Transactions on Electron Devices, 36(12), pp.2803- 2809.
    [75] Kleider, J.P., 2003, “Capacitance Techniques for the Evaluation of Electronic Properties and Defects in Disordered Thin Film Semiconductors”, Thin Solid Films, 427, pp.127-132.
    [76] Georgiev, S.S., Toneva, A., and Sueva, D., 1999, “Investigation of the M/a-Si:H/c-Si Structure as a Schottky Contact with a Diffusion Barrier Layer”, Solar Energy Materials & Solar Cells 58, pp. 387 -397.
    [77] Matsuura, H., 1989, “Hydrogenated Amorphous-Silicon/Crystalline-Silicon Heterojunctions: Properties and Applications”, IEEE Transaction on Electron Devices 36(12), pp.2908 - 2914.
    [78] Unold, T., Rosch, M., Bauer, G..H., 2000, “Defects and Transport in a-Si:H/c-Si Heterojunctions”, J. Non-Cryst. Solids 266-269, pp. 1033-1037.
    [79] Nieuwesteeg, K.J.B.M., Van der Veen, M., and Vink, T.J., 1993, “On the Current Mechanism in Reverse-Biased Amorphous-Silicon Schottky Contacts. I. Zero Bias Barrier Heights and Current Transport Mechanism”, J. Appl. Phys. 74(4), pp. 2572-2581.
    [80] Kanicki, J., 1987, “Metal/Hydrogenated Amorphous Silicon Interfaces”, Mat. Res. Soc. Symp. Proc., Materials Research Society, 95, pp. 399-411.
    [81] Stabler, D.L. and Wronski, C.R., 1977, “Reversible Conductivity Changes in Discharge-Produced Amorphous Si”, Appl. Phys. Lett., 31(.4), pp.292-294.
    [82] Stabler, D. L. and Wronski, C.R., 1980, “Optically Induced Conductivity Changes in Discharge-Produced Hydrogenated Amorphous Silicon”, J. Appl. Phys., 51(6), pp. 3262-3268.
    [83] Street, R.A. and Mott, N. F., 1975, “States in the Gap in Glassy Semiconductor”, Physical Review Letters, 35(19), pp. 1293-1296.
    [84] Dersch, H., Stuke, J., and Beichler, J., 1981, “Light-Induced Dangling Bonds in Hydrogenated Amorphous Silicon”, Appl. Phys. Lett., 38(6), pp. 456-458.
    [85] Imagawa, O., Iwanishi, I., Yokoyama, S., and Shimakawa, K., 1986, “The Localized Density of States in Amorphous Silicon Determined by Electrophotography”, J. Appl. Phys. 60(9), pp. 3176-3181.
    [86] Guha, S., Huang, C.-Y., and Hudgens, S.J., 1984, “Energy Distribution of Light-Induced Gap states in Hydrogenated Amorphous-Silicon Alloys”, Physical review B, 29 (10), pp. 5995-5998.
    [87] Stutzmann, M., Jackson, W.B., and Tsai, C.C., 1985, “Light-Induced Metastable Defects in Hydrogenated Amorphous Silicon: A Systematic Study”, Physical Review B 32(1), pp.23-47.
    [88] Street, R.A., Zesch, J., and Thompson, M.J., 1983, “Effects of Doping on Ttransport and Deep Trapping in Hydrogenated Amorphous Silicon”, Appl. Phys. Lett. 43(7), pp. 672-674.
    [89] Koropecki, R.R., Schmidt, J.A., and Arce, R., 2002, “Density of States in the Gap of Amorphous Semiconductors Determined from Modulated Photocurrent Measurements in the Recombination Regime”, J. Appl. Phys. 91(11), pp. 8965- 8969.
    [90] Cohen, J.D., and Zhong, F., 1995, “Transient Modulated Photocurrent Studies in Hydrogenated Amorphous Silicon: a New Look at Defect Relaxation Dynamics”, J. Non-cryst. Solids, 190, pp. 123-132.
    [91] Dhariwal, S.R., and Rajvanshi, S., 2003, “Theory of Amorphous Silicon Solar Cell (a): Numerical Analysis”, Solar Energy materials & Solar Cells, 79, pp. 199-213.
    [92] Smail, T., Aoucher, M., Mohammed-Brahim, T., 2000, “Numerical Simulation of Low-Field Thermally Stimulated Conductivity in a-Si:H”, J. Non-crys. Solids, 266-269, pp. 376-379.
    [93] Verleg, P.A.W.E., and Dijkhuis, Jaap I., 2000, “Generation-Recombination Noise Studied in Hydrogenated Amorphous Silicon”, J. Non-cryst. Solids, 266-269, pp. 232-236.
    [94] Cohen, J. D., and Kwon, D., 1998, “Identification of the Dominant Electron Deep Trap in Amorphous Silicon from ESR and Modulated Photocurrent Measurements: Implications for Defect Models”, J. Non-Cryst. Solids , 227-230, pp.348-352.
    [95] Nadazdy, V., Durny, R., Pincik, E., Thurzo, I., Kumeda, M., and Shimizu, T., 2000, “Spatial Distribution of Dangling Bonds in Undoped Hydrogenated Amorphous Silicon Observed by Solid-State Voltcoulometry”, J. Non-cryst. Solids, 266-269, pp. 558-564.
    [96] Wagner, S., Xu, X., Li, X.R., Shen, D.S., Isomura, M., Delahoy, A.E., Li, X., Arch, J.K., Nicque, J-L, Fonash, S.J., 1991 Performance and modeling of amorphous silicon solar cells soaked at high light intensity”, Twenty Second IEEE Photovoltaic Specialists Conference - 1991, Las Vegas, NV, USA, pp. 1307-13.
    [97] Schneider, U., Sopka, J., Schroder, B., Oechsner, H.,1988, “Some Aspects on the Saturation and the Origin of Metastable Defects in a-Si:H”, Twentieth IEEE Photovoltaic Specialists Conference - 1988, Las Vegas, NV, USA, pp. 346-351.
    [98] Pivac, B., Kovacevic, I., and Zulim, I., 2002, “Defects Induced in Amorphous Silicon Thin Films by Light Soaking”, Thin Solid Films, 403-404, pp. 513-516.
    [99] Vetrella, B. U., Fameli, G.., Menna, P.T., Roca I Cabarrocas, P., and Zellama, K., 1988, “Study of the Metastable Light-Induced Changes in Hydrogenated Amorphous Silicon by Capacitance Measurements”, Twentieth IEEE Photovoltaic Specialists Conference - 1988, Las Vegas, NV, USA, pp. 207-211.
    [100] Branz, H.M., 1998, “Hydrogen Collision Model of Light-Induced Metastability in Hydrogenated Amorphous Silicon”, Solid State Commun., 105(6), pp. 387- 391.
    [101] Ho, W.Y. and Surya, C., 2001, “Study of Light-Induced Annealing Effects in a-Si:H Thin Films” , Microelectronics Reliability , 41, pp.913-917.
    [102] Park, H.R., Liu, J.Z., Roca, P., Cabarrocas, I., Maruyama, A., Isomura, M., Wagner, S., Abelson, J.R., and Finger, F., 1990 , “Saturation Behavior of the Light-Induced Defect Density in Hydrogenated Amorphous Silicon” , Twenty First IEEE Photovoltaic Specialists Conference - 1990 Part 2 (of 2) , Kissimimee, FL, USA, pp.1642-1647.
    [103] Pivac, B., Pavlovic, M., Kovacevic, I., Etlinger, B., and Zulim, I., 2003, “UV Induced Defects in Amorphous Silicon Thin Film”, Vacuum, 71(1-2), pp. 135-139.
    [104] Chen, J-Y., and Gibson, J.M., 2003, “Electron Irradiation on Amorphous Silicon”, Quantum Confined Semiconductor Nanostructures Symposium, Material. Res. Soc. Symposium Proceedings 737, pp.365 -3701.
    [105] Yelon, A., Rochefort, A., Sheng, S., and Sacher, E., 2003, “Irradiation-Induced Structural Changes in Hydrogenated Amorphous Silicon as Measured by X-ray Photoemission Spectroscopy” , Solar Energy materials & Solar Cells, 78(1-4), pp. 391-8.
    [106] Payson, J. S., and Woodyard, J. R., 1988, “Radiation Resistance Studies of Amorphous Silicon Films”, Twentieth IEEE Photovoltaic Specialists Conference - 1988, Las Vegas, NV, USA, 2, pp.990-995.
    [107] Boudry, J.M. and Antonuk, L.E., 1994, “Radiation Damage of Amorphous Silicon Photodiode Sensors”, IEEE Transactions on Nuclear Science, 41(4), pp. 703-707.
    [108] Srour, J.R., Vendura Jr. G.J., Lo, D.H., Toporow, C.M.C., Dooley, M., Nakano, R.P., and King, E.E., 1998, “Damage Mechanism in Radiation-Tolerant Amorphous Silicon Solar Cells” , IEEE Transactions on Nuclear Science, 45(6), pp. 2624 -2631.
    [109] Shannon, J. M., and Chua, C. H., 2003, “Electronic Effects of Light Ion Damage in Hydrogenated Amorphous Silicon”, Solid-state Electronics, 47, pp. 1903-1907.
    [110] Boudry, J.M. and Antonuk, L.E., 1996, “Radiation Damage of Amorphous Silicon, Thin-Film, Field-Effect Transistors”, Med. Phys. 23(5), pp. 743-754.
    [111] Richard H., B., and Redfield, D., 1989, “Kinetic and Steady-State Effects of Illumination on Defects in Hydrogenated Amorphous Silicon”, J. Appl. Phys., 66(2), pp. 820-828.
    [112] Street, R.A., 1989, “The Thermal Equilibrium Electronic Properties of a-Si:H”, IEEE Transactions on Electron Devices, 36(12), pp.2770-2774.
    [113] Schultz, N.A., Taylor, P.C., 2002, “Temperature Dependence of the Optically Induced Production and Annealing of Silicon Dangling Bonds in Hydrogenated Amorphous Silicon”, Physical Review B-Condensed Matter, 65(23), pp. 2352-8.
    [114] Jackson, W.B. and Kakalios, J., 1988, “Evidence for Hydrogen Motion in Annealing of Light-Induced Metastable Defects in Hydrogenated Amorphous Silicon”, Physical Review B, 37(2), pp. 1020-1023.
    [115] Ready, S.E., and Boyce, J.B., 1991, “Effects of Annealing Time and Temperature on Hydrogen in Doped and Intrinsic Amorphous Silicon” , Mat. Res. Soc. Symp. Proc., 219, pp. 271-276.
    [116] Powell, M., van Berkel, C., French, I., and Nicholls, D., 1987, “Bias Dependence of Instability Mechanisms in Amorphous Silicon Thin-Film Transistors “, Appl. Phys. Lett. , 51(16), pp.1242-1244.
    [117] Kleider, J.P., and Roca I Cabarrocas, P., 2002, “Reverse Bias Annealing of Schottky Diodes: Evidence for the Lower Defect Density and Better Stability of Polymorphous Silicon Compared to Amorphous Silicon”, J. Non-Crys. Solids, 299-302, pp. 599-604.
    [118] Imagawa, O., Yasuda, K., and Yoshida, A., 1989, “Gamma-Ray Irradiation Effect in Amorphous Hydrogenated Silicon”, J. Appl. Phys., 66(10), pp. 4719-4722.
    [119] French I.D., Snell, A.J., LeComber, P.G., and Stephen, J.H., 1983, “The Effect of Gamma-Irradiation on Amorphous Silicon Field Effect Transistors”, Applied Physics A-Solids & Surfaces, 31(1), pp. 19-22.
    [120] Nikum, S., Banerjee, M., Vidyasagar, P.B., Bhoraskar, S.V. and Babras, S., 1991, “Tail States in Hydrogenated Amorphous Silicon Studied by Thermoluminance”, Solid State Communications, 80(8), pp. 563-566.
    [121] Baccaro, S. , De Cesare G., Maiello, G., Masini, G., Montecchi, M., Petti, M., and Ferrari, A., 1996, “Conductivity Effects in Hydrogenated Amorphous Silicon Induced by Gamma-Ray Irradiation”, Sensors and Actuators, B31, pp.107-109.
    [122] Shirafuji J., Shirakawa, K., and Nagata, S., 1986, “Dangling Bond Creation in Hydrogenated Amorphous Silicon by Light-Soaking”, Japanese Journal of Applied Physics, 25(8), pp. L634-L636.
    [123] Shirafuji, J., Nagata J., S., and K. Shirakawa, 1986, “γ-Irradiated Effect on Electronic Properties in Hydrogenated Amorphous Silicon,” phys. Stat. sol. (a) , 98, pp. 311-318.
    [124] Gerstner, E.G., Cheong, T.W.D., and Shannon, J.M., 2001, “Formation of Bulk Unipolar Diodes in Hydrogenated Amorphous Silicon by Ion Implantation” , IEEE Electron Device letters, 22(11), pp.536-538.
    [125] Boudry, J.M. and L.E. Antonuk, 1994, “Radiation Damage of Amorphous Silicon Photodiode Sensors”, IEEE Transaction on Nuclear Science, 41(4), pp. 703-707.
    [126] Fujieda, I., Cho, G., Kaplan, S.N., Perez-mendez., V., Qureshi, S., and Street, R.A. 1989 “, Applications of a-Si:H Radiation Dectors,” J. Non-cryst. Solids, 115(1-3), pp. 174-176.
    [127] Perez-mendez, V., Cho, G., Drewery, J., Jing, T., Kaplan, S.N., Mireshghi, A., Wildermuth, D., Goodman, C.,and Fujieda, I., 1993, “Amorphous Silicon Pixel Radiation Dectors and Associated Thin Film Transistor Electronics Readout” , Nuclear Physics B, 32, pp.287-295.
    [128] Fernandez, M.G., Ferrando ,A., Josa, M.I., Molinero, A., Oller, J.C., Arce, P. Calvo, E., Figueroa, C.F., Garcia, N. F., Matorras, T. R., Vila, I. and Virto, A.L., 2000, “Gamma Irradiation of Semitransparent Amorphous Silicon Sensors”, Nuclear Instruments and Methods in Physics Research A,439, pp.111-116.
    [129] Carabe, J., Fernandez, M.G., Ferrando, A., Fuentes, J., Gadia,J.J., Josa, M.I. , Molinero, A., Oller, J.C., Arce, P. , Calvo, E., Figueroa, C.F., Garcia, N., Matorras, F., Rodrigo, T., Vila, I., Virto, A.L., Fenyvesi, A., Molnar, J. ,and Sohler, D., 2000, “Results on Photon and Neutron Irradiation of Semitransparent Amorphous-Silicon Sensors”, Nuclear Instruments and Methods in Physics Research A, 455, pp.361-368.
    [130] Stesman, A., Devine, R., Revesz, A.G., and Hughes, H., 1990, “Irradiation-Induced ESR Active Defects in SIMOX Structures”, IEEE Transactions on Nuclear Science, 37(6), pp. 2008-2012.
    [131] Malone, C.T., Nicque, J.L., Wronski, C.R., and Bennett, M., 1991, “Effect of Light Induced Defects on the Quantum Efficiency of Amorphous Silicon Schottky Barrier Solar Cell Structures”, Photovoltaic Specialists Conference, Conference Record of the Twenty Second IEEE, 2, pp.1219-1224.
    [132] Gwilliam, R.M., Hutchinson, S., Shannon, J.M., Emerson, N.G., and Sealy, B.J., 1998, “Low Resistivity Layers and Schottky Contacts in Amorphous Silicon by Co+ Implantation”, Electronics Letters, 34(25), pp. 2441-2442.
    [133] Choi, T.Y., Hwang, D.J., and Grigoropoulos, C.P., 2003, “Ultrafast Laser-Induced Crystallization of Amorphous Silicon Films”, Optical Engineering, 42(11), pp. 3383-8.
    [134] Pivac, B., Pavlovic, M., Kovacevic, I., Edinger, B., and Zujim, I., 2003, “UV Light Induced Defects in Amorphous Silicon Thin Films”, Vacuum, 71(1-2), pp.135-9.
    [135] Kuendig, J., Goetz, M., Niquille, X., Shah, A., vaccaro, S., Mosig, J., Gerlach, L., de Magt, P., Fernandez, E., 2000, “Thin-Film Silicon Solar Cells for Space Applications: Radiation Hardness and Applications for an Integrated Solant(solar cell-antenna) module”, Coference Record of the twenty-eighth IEEE photovoltaic specialists Conference (Cat. No.00CH37036), IEEE. 2000, pp. 1079 - 82, Piscataway, NJ, USA.
    [136] Danesh, P., Pantchev, B., Savatinova, I., Liarokapis, E., kaschieva, S., Belov, A.G., 2002, “Electron Irradiation of a-Si:H Films Prepared from Hydrogen-Diluted Silane”, Vacuum, 69(1-3) , pp.79-82.
    [137] Sheng, S., Sacher, E., and Yelon, A., 2000, “X-ray Photoemission Spectroscopic Study of Light-Induced Structural Changes in Amorphous Silicon”, Amorphous and Heterogeneous Silicon Thin Films Symposium, Materials Research Society Symposium Proceedings Vol. 609, pp. A10.1.1-6. Warrendale, PA, USA.
    [138] Aguas, H., Fortunato, E., Silva, V., Pereira, L., and R. Martins, 2002, “High Quality a-Si:H Films for MIS Device Applications”, Thin Solid Films ,403-404, pp.26-29.
    [139] Chang, H.R., Winterhalter, R.G., and Humphrey K.D., 1999, “1200V, 50A trench Oxide PiN Schottky(TOPS) Diode”, Industry Applications Conference, Thirty-Fourth IAS Annual Meeting. Conference Record of the IEEE , 1 (3-7), pp.353 - 358.
    [140] Inuishi, Y., 1991, “High Field Electron Transport and Breakdown in Amorphous and Disordered Solids”, Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo, Japan, pp. 66-68.
    [141] Jang, J., and Lee, C.,1983, “New Amorphous Silicon Majority-Carrier Device” , Appl. Phys. Lett., 43(1), pp.90-92.
    [142] Nara, Y., Kudou, Y., and Matsumura, M., 1983, “Switching Characteristics of Amorphous Silicon Schottky Barrier Diodes” , J. Non-cryst. Solids, 59 & 60, pp. 1175-1178.
    [143] Seki K., Yamamoto, H., Sasano, A., and Tsukada, T., 1983, “Hydrogenated Amorphous Silicon Pin Diodes with High Rectification Ratio” , J. Non-cryst. Solids, 59 & 60, pp. 1179-1182.
    [144] Guliants, E.A., Ji, C., Song, Y.J., and Anderson, W.A., 2000, “A 0.5-μm-thick Polycrystalline Silicon Schottky Diode with Rectification Ratio of 106”, Appl. Phys. Lett., 80(8), pp. 1474-1476.
    [145] Koiwa, M., Otsuka, K., Miyazaki, T., 1999, “Structural Modification of Amorphous Silicon by X-ray Irradiation”, Japan Institute of Metals Proceedings, Volume 12(JIMIC-3), Solid-Solid Phase Transformations Conference, Japan Inst. Metals, Sendai, Japan, Part vol. 2, pp. 1231-4.
    [146] Branz, H.M., Collins, R.W., Okamoto, H., Guha, S., and Schropp, R., 1999, “Structural Properties of Amorphous Silicon Produced by Electron Irradiation”, Amorphous and Heterogeneous Silicon Thin Films Symposium, Materials Research Society Symposium Proceedings, 557, pp. 231-6. Warrendale, PA, USA.
    [147] Amekura, H., Kishimoto, N., Kono, K., andKondo, A., 2000, “Persistent Excited Conductivity and the Threshold Fluence in a-Si:H under 17 Mev Proton Irradiation”, J. Non-cryst. Solids, 266-269, pp. 444-9.
    [148] Yelon, A., Fritzsche, H., and Branz, H.M., 2000, “Electron Beam Creation of Mestastable Defects in Hydrogenated Amorphous Silicon: Hydrogen Collision Model”, J. Non-cryst. Solids, 266-269, pp. 437-43.
    [149] Kin, M.Y., Walukiecz, W., Muto, S., Hyun, C.J., and Abelson, J.R., 1999, “The Effects of X-ray Induced Structural Changes on the Microstructure of a-Si after Thermal Crystallion”, Applied Physics Letters, 75(14), pp. 2032-4.
    [150] Kishimoto, N., Amekura, H., Kono, K., and Lee, C.G.,1998, “Radiation Resistance of Amorphous Silicon in Optoelectric Properties under Proton Bombardment”, Journal of Nuclear Materials, 258-263, part. B, pp. 1908-13.
    [151] Muto, S., Kobayashi, Y., Kin, M.Y., Walukiewicz, W., Echer, cormick, S., and Abelson, J.R., 1998, “The influence of X-ray Irradiation on Structural Relaxation and Crystallization of Amorphous Silicon”, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 37(11), pp. 5890-3.
    [152] Morita, Y., Sasaki, S., Oshima, T., Kuroda, H., and Ushirokawa, A., 1996, “Proton Irradiation Effects of Amorphous Silicon Solar Cell for Solar Power Satellite”, Recent Progress in Accelerator Beam Application. Proceedings of the 7th International Symposium on Advance Nuclear Energy Research.JAERI, pp. 261-4, Ibaraki-ken, Japan.
    [153] Spinella, C., Lombardo, S., Priolo, F., and Campisano, S.U., 1996, “Ion Assisted Nucleation in Amorphous Silicon: Mechanism and Theoretical Description”, Thermodynamics and Kinetics of Phase Transformations Symposium, Mater. Res. Soc., pp. 165-70. , Pittsburgh, PA, USA.
    [154] Sato, F., Hirano, Y., Kajiyama, H., Suzuki, R., Motooka, T., Chikawa, J., and Takizawa, K., 1996, “Structural Change of Amorphous Silicon Induced by X-Ray Irradiation from Synchrotron Radiation”, Optoelectronics-Devices & Technologies, 11(1), pp. 43-50.
    [155] Spinnella, C., Lombardo, S., Priolo, F., U., Campisano, S., 1996, “Mechanism and Kinetics of the Ion-Assisted Nucleation in Amorphous Silicon”, Physical Review B-Condensed Matter, 53(12), pp.7742-9.
    [156] Shin, J.H., and Atwater, H.A., 1994, “Generalized Activation Energy Spectrum Theory: a New Approach for Modeling Structural Relaxation in Amorphous Solids”, Crystallization and Related Phenomena in Amorphous Materials Symposium, Mater. Res. Soc., pp. 167-72, Pittsburgh, PA, USA.
    [157] Scholz, A., Schroder, B., and Oechsner, H., 1994, “ A Quantitative Model for the Metastable Defect Creation in Amorphous Semiconductors by Kev-Electron Irradiation” , Amorphous Silicon Technology Symposium, Mater. Res. Soc., pp. 293-8, Pittsburgh, PA, USA.
    [158] Coffa, S., Battaglia, A., and Priolo, F., 1994, “Ion Beam Induced Structural and Electrical Modification in Crystalline and Amorphous Silicon”, Materials Synthesis and Proceeding Using Ion Beams Symposium, Mater. Res. Soc., pp. 3-14, Pittsburgh, PA, USA.
    [159] Lee, S. K., Kim, Y.S., Park, J.S., and Han, M.K., 1994, “A Study of Ultraviolet Irradiation Effects on Degraded Characteristics of Hydrogenated Amorphous Silicon Thin Film Transistor”, Transactions of the Korean Institute of Electrical Engineers, 43(9), pp.1488-95.
    [160] Kachurin, G.A., 1994, “Solid-Phase Crystallization of Amorphous Silicon Films Induced by Radiation”, Mikroelektronika, 23(6), pp. 85-91.
    [161] Lin, H.S., 1994, “Hole and Electron Trapping Effects in Hydrogenated Amorphous Silicon (a-Si:H)- a Study of Stability of PIN Solar Cells”, Research & Progress of Solid State Electronics, 14(2), pp.127-35.
    [162] Yanagisawa, T., 1994, “Correlation between Light and Current Induced Degradation in a-Si Solar Cells”, Electronics Letters, 30(21), pp.1802-3.
    [163] Saito, Y., and Yoshida, A., 1994, “Defect Creation in Hydrogenated Amorphous Silicon Films Induced by Vacuum Ultraviolet Light from Synchrotron and Undulator Radiation”, Philosophical Magazine B- Physics of Condensed Matter, Structural Electronic Optical & Magnetic properties, 70(1), pp.133-9.
    [164] Zellama, K., von Bardeleben, J.H., Quillet, V., Bouizem, Y., Sladek, P., Theye, M.L., and Roca, I., Cabarrocas, P., 1993, “Experimental Study of Disorder and Defects in Undoped a-Si:H as a Function of Annealing and Hydrogen Evolution”, J. Non-cryst. Solids, 164-166, pp. 285-288.
    [165] Gamulin, O., Ivanda, M., Desnica, U.V., and Furic, K., 1997, “Comparison of Structural Changes in Amorphous Silicon Induced by Thermal and CW Laser Annealing”, J. Molecular Structure, 410-411, pp.249-252.
    [166] Szekeres, A., Gartner, M., Vasiliu, F., Marinov, M., and Beshkov, G., 1998, “Crystallization of a-Si:H Films by Rapid Thermal Annealing”, J. Non-cryst. Solids, 227-230, pp. 954-957.
    [167] Park, J.H., Kim, D.Y., Ko, J.K., Chakrabaty, K., and Yi, J., 2003, “High Temperature Crystallized Poly-Si on Mo Substrates for TFT Application”, Thin Solid Films, 427, pp.303-308.
    [168] Choi, J.H., Kim, D.Y., Park, S.J., Choo, B.K., and Jang, J., 2003, “Temperature Dependence of the Growth of Super-Grain Polycrystalline silicon by Metal Induced Crystallization” , Thin Solid Films, 427, pp. 289-293.
    [169] Ruther, R., Livingstone, J., 1996, “An Infrared study of Si-H cluster formation in a-Si:H Thin Films”, Infrared Physics & Technology, 37, pp.533-537.
    [170] Panwar, O.S., Mukherjee, C., Bhattacharyya, R., 1999, “Effect of Annealing on the Electrical, Optical and Structural Properties of Hydrogenated Amorphous Silicon Films Deposited in an Asymmetric R.F. Plasma CVD System at Room Temperature”, Solar Energy Materials & Solar Cells, 57, pp. 373-391.
    [171] Lucovsky, G., Nemanich, R. J., and Knights, J.C., 1979, “Structural Interpretation of the Vibrational Spectra of a-Si:H Alloys “, Physical Review B, 19(4), pp.2064-2073 .
    [172] Saha, R., and Nix, W. D., 2002, “Effects of the substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation”, Acta Materialia, 50, pp. 23-38.
    [173] Oliver, W.C.,and Pharr, G.M., 1992, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments” , Journal of Materials Research, 7(6), pp. 1564-1583.
    [174] Hainsworth, S.V., Chandler, H.W.,and Page, T.F., 1996, “ Analysis of Nanoindentation Load-Displacement Loading Curves”, Journal of Materials Research, 11, pp. 1987-1995.
    [175] Miyahara, K., Nagashima, N., Ohmura, T., and Matsuoka, S., 1999, “Evaluation of Mechanical Properties in Nanometer Scale Using AFM- Based Nanoindentation Tester” , Nanostructured Materials, 12, pp. 1049 -1052.
    [176] Farhi, G., Aoucher, M., Mohammed-Brahim, T., 2002, “Study of The Solid Phase Crystallization Behavior of Amorphous Sputtered Silicon by X-ray Diffraction and Electrical Measurements”, Solar Energy Materials & Solar Cells, 72, pp.551-558.
    [177] Ahn, J.H., Kwon, D., 2000, “Micromechanical Estimation of Composite Hardness Using Nanoindentation Technique for Thin-Film Coated System”, Materials Science and Engineering, A285, pp. 172-179.
    [178] Sundarajan, S., and Bhushan, B., 2001, “Development of a Continuous Microscratch Technique in an Atomic Force Microscope and Its Application to Study Scratch Resistance of Ultrathin Hard Amorphous Carbon Coatings” , Journal of Materials Research, 16(2), pp.437-445.
    [179] Bhushan, B., Gupta, B.K., and Azarian M.H.,1995, “Nanoindentation, Microscrath, Friction and Wear Studies of Coatings for Contact Recording Applications” , Wear, 181-183, pp.743-758.
    [180] Mullin, J.A., 2000, “Viscous Flow and Structural Relaxation in Amorphous Silicon and Amorphous Selenium”, Ph. D. Thesis, Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA.
    [181] Witvrouw, A., and Spaepen F., 1993,”Viscosity and Elastic Constants of Amorphous Si and Ge”, J. Appl. Phys., 74(12), pp. 7154-7161.
    [182] Sze, S.M., 1981, “Physics of Semiconductor Devices”, John Wiely & Sons, Inc. Ch. 5.
    [183] Street, R.A., 1991, Hydrogenated Amorphous Silicon, Cambridge University Press, Ch. 9.
    [184] Qureshi, S., 1991, “Hydrogenated Amorphous Silicon Radiation Detectors: Material Parameters; Radiation Hardness; Charge Collection”, LBL-30292.
    [185] Aflatooni, K., Hornsey, R., and Nathan, A., 1999, “Reverse Current Instabilities in Amorphous Silicon Schottky Diodes: Modeling and Experiments”, IEEE Transaction on Electron Devices, 46(7), pp.1417-1422.
    [186] Averine, S., Chan, Y.C., and Lam, Y.L., 2000, “Electrical Properties of Schottky Barrier in MSM-diode Structure”, Semiconducting and Insulating Materials Conference, SIMC-XI. International, pp.345 - 348
    [187] Sordan, R.,and Nikolic, K., 1997, “Room-temperature Quantum – Constriction Rectifier”, Proceedings of 21st International Conference on Microelectronics, 1, NIS, YUGOSLAVIA, pp.137-140.
    [188] Vetrella, U.B., Fameli, G., Menna, P.T., Cabarrocas, R.I., and Zellama, K., 1988, “Study of the Metastable Light-Induced Changes in Hydrogenated Amorphous Silicon by Capacitance Measurements”, Photovoltaic Specialists Conference, Conference Record of the Twentieth IEEE, pp. 207-211.
    [189] Joannopoulos, J.D., and Lucovsky, G., 1984, “The Physics of Hydrogenated Amorphous Silicon II”, Ch.5.
    [190] Marques, F.C., Wickboldt, P., Pang, D., Chen, J.H., and Paul, W., 1998, “Stress and Thermomechanical Properties of Amorphous Hydrogenated Germanium Thin Films deposited by Glow Discharge”, J. appl. Phys., 84(6), pp.3118-3124.
    [191] Nix, W. D., 1989, “Mechanical Properties of Thin Film”, Metall. Trans. A, 20A, pp. 2217-2245.
    [192] Hu, S.M., 1991, “Stress related Problems in Silicon Technology”, J.Appl. Phys., 70(6), pp. R53-80.
    [193] Evans, A.G., and Hutchinson, J. W., 1995, “The Thermomechanical Integrity of Thin Films and Multilayers”, Acta Metall. Mater., 43(7), pp. 2507-2350.
    [194] Hsueh, C. H., and Evans, A.G., 1985, “Residual Stresses in Metal/Ceramic Bonded Strips”, J. Am. Ceram. Soc., 68(5), pp. 241-248.
    [195] Freund, L. B., and Nix, W. D., 1996, “A Critical Thickness Condition for a Strained Compliant Substrate/Epitaxial Film System”, Appl. Phys. Lett., 69(2), pp.173-175
    [196] Zhang, T.Y., Lee, S., Guido, L. J., and Hsueh, C.H., 1999, “Criteria for Formation of Interface Dislocations in a Finite Thickness Epilayer Deposited on a Substrate”, J. Appl. Phys., 85(11), pp. 7579-7586.
    [197] Volkert, C.A., 1991, “Stress and Plastic Flow in Silicon during Amorphization by Ion Bombardment”, J. Appl. Phys., 70(7), pp. 3521-3527.
    [198] Volkert, C.A., 1993, “Density Changes and Viscous Flow during Structural Relaxation of Amorphous Silicon”, J. Appl. Phys., 74(12), pp. 7107-7113.
    [199] Hsueh, C. H., and Evans, A.G., 1983, “Oxidation Induced Stressed and Some Effects on the Behavior of Oxide Films”, J. Appl. Phys., 54(11), pp. 6672-6686.
    [200] Scherer, G. W., and Garino, T., 1985, “Viscous Sintering on a Rigid Substrate”, J. Am. Ceram. Soc., 68(4), pp. 216-220.
    [201] Hsueh, C.H., 1985, “Sintering of a Ceramic Film on a Rigid Substrate”, Scr. Metall., 19, pp. 1213-1217.
    [202] Cai, P.Z., Green, D.J., and Messing, G.L., 1997, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation”, J. Am. Ceram. Soc., 80(8), pp. 1940-1948.
    [203] Townsend, P.H., Barnett, D.M., and Brunner, T.A., 1987, “Elastic Relationships in Layered Composite Media with Approximation for the case of Thin Films on a Thick Substrate”, J. Appl. Phys., 62, pp. 4438.
    [204] Hsueh, C.H., 1991, “Some Considerations of Determ ination of Residual Stresses and Young’s Moduli in Ceramic Coatings”, J. Am. Ceram. Soc., 74(7), pp. 1646-1649.
    [205] Atkinson, A., 1995, “Generation and Relief of Stress in Ceramic Films”, Ceramic Films and Coatings, 54, pp. 1-14.
    [206] Liu, H.C., and Muraka, S.P., 1992, “Elastic and Viscoelastic Analysis of Stress in Thin Films”, J. Appl. Phys., 72(8), pp. 3458-3463.
    [207] Witvrouw, A., Volkert, C.A., and Spaepen, F., 1991, “The Viscosity of Amorphous Metallic Thin Films”, Mater. Sci. Eng., A134, pp. 1274-1277.
    [208] Loopstra, O. B., Van Snek, E.R., De Keijser, T.H., and Mittemeijer, E. J., 1991, “Model for Stress and Volume Changes of a Thin Film on a Substrate upon Annealing : Application to Amorphous Mo/Si Multilayers”, Phys. Rev. B, 44, pp.13519-13533.
    [209] Bluestein, S.D., Chan, E.K., Miaoulis, I.N., and Wong, P.Y., 1999, “In Situ Measurement of Thermomechanical Effects and Properties in Thin-Film Polymers”, IEEE Trans. Compon. Packag., Technol., 22, pp. 421-425.
    [210] Rosenberg, S.E., Madras, C.G., Wong, P.Y., and Miaoulis, I.N., 1997, “The Viscosity of Germanium during Substrate Relaxationupon Thermal Anneal”, J. Mater. Res., 12(7), pp. 1706-1710.
    [211] Wong, P.Y., Madras, C.G., Miaoulis, I.N., Goldman, L., and Korenstein, R., 1998, “Relaxation of Extrinsic and Intrinsic Stresses in Germanium Substrate with Silicon Film”, Thin Solid Films, 320(2), pp. 260-263.
    [212] Isomae, S., Nanba, M., Tamaki, Y., and Maki, M., 1977, “Creep Curve of Silicon Wafers”, Appl. Phys. Lett., 30(11), pp.564-566
    [213] Rosenberg, S.E., Wong, P.Y., Miaoulis, I.N., 1995, “A Theoretical Study of the Effect of Thermal Annealing on Curvature Changes in Multilayered Structures”, Thin Solid Films, 269(1-2), pp. 64-68.
    [214] Chu, S.N.G., 1998, “Elastic Bending of Semiconductor Wafer Revisited and Comments on Stoney’s Equation”, J. Electrochem. Soc., 145(10), pp. 3621-3627.
    [215] Hsueh, C.H., and Lee S., 2002, “Effects of Viscous Flow on Residual Stresses in Film/Substrate Systems”, J. Appl. Phys., 91(5), pp. 2760-2764.
    [216] Ko, S.C., Lee, S., and Hsueh, C.H., 2003, “Viscoelastic Stress Relaxation in Film / Substrate Systems - Kelvin Model”, J. Appl. Phys., 93(5), pp. 2453-2457.
    [217] Wang, J., Shi, F.G., Nieh, T.G., Zhao, B., Brongo, M.R., Qu, S., and Rosenmayer, T., 2000, “Thickness Dependence of Elastic Modulus and Hardness of On-wafer Low-k Ultrathin Polytetrafluoroethylene Films”, Scripta Materialla, 42, pp. 687-694.
    [218] Jager, I.L., 2002, “Comment on: Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation”, Scripta Materialia, 47, pp. 429-432.
    [219] Ahn, J.H., and Kwon, D., 2000, “Micromechanical Estimation of Composite Hardness Using Nanoindentation Technique for Thin-film Coated System”, Materials Science and Engineering, A285, pp. 172-179.
    [220] Rafferty, C.S., Landsberger, L.M., Dutton R.W., and Tiller, W.A., 1989, “Nonlinear Viscoelastic Dilation of SiO2 Films”, Appl. Phys. Lett., 54(2), pp. 151-152.
    [221] Avrutin, V.S., Izumskaya, N.F., Hartman, Y. M., Andreeva, A.V., and Vyatkin, A.F., 1996, “Causes of Cracking of Vacuum Deposited Thick Amorphous Silicon Film”, Mat. Sci. Eng. B, 39, pp. 21-24.
    [222] Guggenheim, E. A., “Thermodynamics”, Interscience Publishers, Inc., New York, NY, (1949) , p.45.
    [223] Chu, S. L., 2003, “The Effects of Ti Interlayer in the Ni/Si Reaction System”, Master Thesis, Department of Material Science and Engineering, Tsing Hua University.
    [224] Carslaw, H. S. and Jaeger, J. C. “Conduction of Heat in Solids”, 2nd Ed., Clarendon Press, Oxford, England (1959).
    [225] Crank, J. “Mathematics of Diffusion”, 2nd Ed., Oxford University Press, London, England, (1975).
    [226] Dallesasse, J. M., and Holonyak, N. Jr., 1991,“Native-oxide Stripe-geometry AlxGa1-xAs-GaAs Quantum Well Heterostructure Lasers”, Appl. Phys. Lett., 58(4), pp. 394 -396.
    [227] Maranowski, S. A., Smith, F. A., Caracci, S. J., Holonyak, N. Jr., Dallesasse, J.M., Bour, D. P., and Treat, D. W., 1992 , “Native-oxide Defined In0.5(AlxGa1-x)0.5P Quantum Well Heterostructure Lasers(660nm)”, Appl. Phys. Lett., 61(14), pp.1688-1690.
    [228] Nickel, H., 1995, “A Detailed Experimental Study of the Wet Oxidation Kinetics of AlxGa1-xAs Layers”, J. Appl. Phys., 78(8), pp.5201-5203.
    [229] Naone, R. L., and Coldren, L. A., 1997, ”Surface Energy Model for the Thickness Dependence of the Lateral Oxidation of AlAs” , J. Appl. Phys., 82(5), pp.2277-2280.
    [230] Ko, S. C., Lee, S., Wang, H. L. and Chou, Y. T., 2003, “Wet Oxidation Kinetics of AlAs at Elevated Temperatures”, J. Mater. Res., 18(5), pp.1027-1030.
    [231] Prussin, S., 1961, “Generation and Distribution of Dislocations by Solute Diffusion”, J. Appl. Phys., 32(10), pp. 1876-1881.
    [232] Li, J. C. M., 1978, “Physical Chemistry of Some Microstructural Phenomena”, Metallurgical Transactions A, 9A, pp. 1353-1380.
    [233] Miller, D. P., Moore, J. E. and Moore, C. R. , 1962, “Boron Induced Dislocations in Silicon” , J. Appl. Phys., 33(8), pp.2648-2652.
    [234] Schwuttke, G. H. and Queisser, H. J., 1962, “X-ray Observations of Diffusion-induced Dislocations in Silicon”, J. Appl. Phys., 33(4), pp.1540-1542.
    [235] Lee, S. and Li, J. C. M., 1981, “Dislocation-free Diffusion Processes”, J. Appl. Phys., 52(3), pp.1336-1346.
    [236] Chu, J. L. and Lee, S., 1993, “Chemical Stresses in Composite Circular Cylinders”, J. Appl. Phys., 73(5), pp. 2239-2248.
    [237] Chu, J. L. and Lee, S., 1993, “Diffusion-induced Stresses in a Long Bar of Square Cross Section”, J. Appl. Phys., 73(7), pp.3211-3219.
    [238] Chu, J. L. and Lee, S., 1993, “Hygrothermal Stresses in a Solid: Constant Surface Stress”, J. Appl. Phys., 74(1), pp.171-188.
    [239] Wang, W. L., Chou, Y. T., and Lee, S., 1998, “Chemical Stresses Induced by Grain-Boundry Diffusion”, Metall. Mater. Trans, 29A, pp. 2121-2125.
    [240] Wang, W. L., Chou, Y.T., and Lee, S., 2001, “Chemical Stresses Induced by Grain-boundry Diffusion in Thin Films”, J. Mater. Res., 16(7), pp. 1967-1974.
    [241] Gilman, G. H. and Farrell, H. H., 1976, “Grain-boundry Diffusion in Thin Films: I. the Isolated grain Boundry”, J. Appl. Phys., 47(9), pp.3792-3798.
    [242] Wang, W. L., Chou, Y.T., and Lee, S., 1999, “A Note on Grain Boundry Diffusion in Thin Films”, Scripta Materialia, 41(10), pp. 1061-1065.
    [243] Hsueh, C.H., Lee S., and Lin, H.Y., 2004, “Analyses of Edge Delamination in Multilayer systems” Submitted to JAP for publication.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE