研究生: |
蔣肇謙 Chiang, Chao-Chien |
---|---|
論文名稱: |
Effect of PtMn underlayer on ordering, morphology and magnetic behavior of FePt 鐵錳底層對於鐵鉑合金之序化,表面形貌以及磁性行為之影響 |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
金重勳
曾院介 歐陽皓 蔡佳霖 賴志煌 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 鐵白金 、錳白金 、記錄媒體 、漸進式媒體 |
外文關鍵詞: | FePt, PtMn, graded media, recording media |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究錳白金底層對於鐵白金合金性質之影響。在第一個部分我們發現錳白金底層能夠促進鐵金之低溫相變化。我們將錳白金底層與鐵白金一同鍍製在二氧化矽的基板上,我們發現厚度為10奈米的鐵白金長在50奈米的錳白金底層上在325 C 退火處理後,水平的矯頑磁場為7688 Oe。另外,我們也觀察到 554 Oe 的交換場,這表示錳白金除了能夠促進鐵白金的低溫相變之外,還提供了額外的異向性能來增加鐵白金的矯頑磁場。
之後,我們利用氧化鎂(001)的基板來成長具有垂直異向性的鐵白金薄膜。我們發現,利用錳白金底層能夠消除單純鐵白金長在氧化鎂基板上所出現的長條狀的磁域,並形成特殊的方塊型磁域。當成長在錳白金底層的鐵白金的厚度由12.5奈米逐漸增厚之後,其磁性翻轉的機制由原本的回轉模式為主轉變成由磁域壁移動所主導的翻轉機制。然而在沒有錳白金底層的樣品,我們發現其翻轉機制都是由磁域壁移動所主導。所有鐵白金的矯頑磁場都因為加了錳白金的底層而上升,這是因為錳白金的底層改變了鐵白金的成長機制進而改變其表面形貌,另外錳白金也提供了一個額外的異向性能,因此改變了鐵白金的矯頑磁場。
最後我們研究錳白金以及鐵白金這個雙層結構縱向的異向性能的分佈,我們發現由於錳的擴散以及反鐵磁性的錳白金提供額外異向性的緣故,此一雙層結構呈現中間軟而上下硬的異向性分佈。此為一漸進式媒體所需要的結構。
[1] Weller, D. & Moser, A. Thermal eect limits in ultrahigh-density magnetic recording. IEEE Trans. on Mag. 35, 4423-4439 (1999).
[2] Bennett, W., Zhang, B. & Richter, H. Inuence of orientation ratio on reverse erase-edge noise and track-edge dipole distribution. IEEE Trans.on Mag. 34, 743-749 (1998).
[3] Fullerton, E. et al. Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording. Appl. Phys. Lett. 77, 3806-3808 (2000).
[4] Abarra, E., Inomata, A., Sato, H., Okamoto, I. & Mizoshita, Y. Longitudinal magnetic recording media with thermal stabilization layers. Appl. Phys. Lett. 77, 2581-2583 (2000).
[5] Iwasaki, S. Discoveries that guided the beginning of perpendicular magnetic recording. J. Magn. Magn. Mater 235, 227-234 (2001).
[6] Ruigrok, J., Coehoorn, R., Cumpson, S. & Kesteren, H. Disk recording beyond 100 Gb/in2: Hybrid recording? (invited). J. Appl. Phys. 87, 5398-5403 (2000).
[7] New, R., Pease, R. & White, R. Lithographically patterned single-domain cobalt islands for high-density magnetic recording. J. Magn. Magn. Mater
155, 140 145 (1996)
[8] Farrow, R. et al. Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films. J. Appl. Phys. 79, 5967{5969 (1996).
[9] Maat, S. et al. Antiferromagnetic structure of FePt3 lms studied by neutron scattering. Phys. Rev. B 63, 134426 (2001).
[10] Landau, L. D., Lifshitz, E. M. & Pitaevski, L. P. Electrodynamics of Continuous Media (Elsevier, 2004).
[11] Meiklejohn, W. & Bean, C. New magnetic ansiotropy. Phys. Rev. 102, 1413-1414 (1956).
[12] Meiklejohn, W. & Bean, C. New magnetic ansiotropy. Phys. Rev. 105, 904{913 (1957).
[13] Malozemo, A. P. Random-eld model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679-3682 (1987).
[14] Mauri, D., Siegmann, H., Bagus, P. & Kay, E. Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys. 62, 3047-3049 (1987).
[15] Koon, N. C. Calculations of exchange bias in thin lms with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett. 78, 4865-4868 (1997).
[16] Schulthess, T. & Butler, W. Consequences of spin-
op coupling in exchange biased films. Phys. Rev. Lett. 81, 4516-4519 (1998).
[17] Schulthess, T. & Butler, W. Coupling mechanisms in exchange biased films (invited). J. Appl. Phys. 85, 5510-5515 (1999).
[18] Nowak, U., Misra, A. & Usadel, K. Domain state model for exchange bias.J. Appl. Phys. 89, 7269-7271 (2001).
[19] Nowak, U. et al. Domain state model for exchange bias. I. Theory. Phys. Rev. B 66, 014430 (2002).
[20] Radu, F. Fundamental aspects of exchange bias effect (Ruhr- University Bochum, 2005).
[21] Radu, F., Westphalen, A., Theis-Brohl, K. & Zabel, H. Quantitative description of the azimuthal dependence of the exchange bias eect. J.Phys.:Condens. Matter 18, L29-L36 (2006).
[22] Radu, F. & Zabel, H. Springer tracts in modern physics, vol. 227 (Springer,2008).
[23] Ravelosona, D., Chappert, C., Mathet, V. & Bernas, H. Chemical order induced by ion irradiation in FePt (001) lms. Appl. Phys. Lett. 76, 236-238 (2000).
[24] Ravelosona, D., Chappert, C., Mathet, V. & Bernas, H. Chemical order induced by He+ ion irradiation in FePt(001) lms. J. Appl. Phys. 87, 5771-5773 (2000).
[25] Lai, C., Yang, C. & Chiang, C. Ion-irradiation-induced direct ordering of L10 FePt phase. Appl. Phys. Lett. 83, 4550-4552 (2003).
[26] Bernas, H. et al. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media. Phys. Rev. Lett. 91, 077203 (2003).
[27] Maeda, T., Kai, T., Kikitsu, A., Nagase, T. & Akiyama, J. Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu. Appl. Phys. Lett. 80, 2147-2149 (2002).
[28] Lee, S., Yang, S., Kim, Y. & Na, J. Rapid ordering of Zr-doped FePt alloyfilms. Appl. Phys. Lett. 78, 4001-4003 (2001).
[29] Coey, K., Parker, M. & Howard, J. High anisotropy L10 thin lms for
longitudinal recording. IEEE Trans. on Mag. 31, 2737{2739 (1995).
[30] Lai, C., Wu, Y. & Chiang, C. Eects of forming gas annealing on low temperature ordering of FePt films. J. Appl. Phys. 97, 10H305 (2005).
[31] Chen, S. et al. Improvement in hard magnetic properties of FePt films by introduction of Ti underlayer. IEEE Trans. on Mag. 41, 915-917 (2005).
[32] Hsu, Y., Jeong, S., Laughlin, D. & Lambeth, D. Eects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films J. Appl. Phys. 89, 7068-7070 (2001).
[33] Hsu, Y., Jeong, S., Laughlin, D. & Lambeth, D. The effects of Ag underlayer and Pt intermediate layers on the microstructure and magnetic properties of epitaxial FePt thin films. JMMM 260, 282{294 (2003).
[34] Xu, Y., Chen, J. & Wang, J. In situ ordering of FePt thin films with face centered-tetragonal (001) texture on CrRu underlayer at low substrate temperature. Appl. Phys. Lett. 80, 3325-3327 (2002).
[35] Chen, J., Lim, B. & Wang, J. Controlling the crystallographic orientation and the axis of magnetic anisotropy in L10 FePt films. Appl. Phys. Lett.
81, 1848-1850 (2002).
[36] Lai, C., Yang, C., Chiang, C., Balaji, T. & Tseng, T. Dynamic stress-induced low-temperature ordering of FePt. Appl. Phys. Lett. 85, 4430-4432 (2004).
[37] Moser, A. et al. Magnetic recording: advancing into the future. J. Phys. D 35, R157{R167 (2002).
[38] Ko, H., Perumal, A. & Shin, S. Fine control of L10 ordering and grain growth kinetics by C doping in FePt lms. Appl. Phys. Lett. 82, 2311-2313 (2003).
[39] Yan, M. et al. Fabrication of nonepitaxially grown double-layered FePt: C/FeCoNi thin lms for perpendicular recording. Appl. Phys. Lett. 83, 3332-3334 (2003).
[40] Perumal, A., Takahashi, Y. K. & Hono, K. L10 FePt-C nanogranular perpendicular anisotropy films with narrow size distribution. Appl. Phys.Exp. 1, 101301 (2008).
[41] Perumal, A., Takahashi, Y. K. & Hono, K. FePt-C nanogranular films for perpendicular magnetic recording. J. Appl. Phys. 105, 07B732 (2009).
[42] Luo, C., Liou, S., Gao, L., Liu, Y. & Sellmyer, D. Nanostructured FePt : B2O3 thin films with perpendicular magnetic anisotropy. Appl. Phys. Lett. 77, 2225{2227 (2000).
[43] Ichitsubo, T. et al. Mechanism of c-axis orientation of L10 FePt in nanostructured FePt/B2O3 thin films. Phys. Rev. B 77, 094114 (2008).
[44] Pike, C., Roberts, A. & Verosub, K. Characterizing interactions in fine magnetic particle systems using rst order reversal curves. J. Appl. Phys.85, 6660-6667 (1999).
[45] Preisach, F. Uber die magnetische nachwirkung. Z. Phys. 94, 277-302 (1935).
[46] Pike, C. First-order reversal-curve diagrams and reversible magnetization. Phys. Rev. B 68, 104424 (2003).
[47] Pike, C., Roberts, A., Dekkers, M. & Verosub, K. An investigation of multi-domain hysteresis mechanisms using FORC diagrams. Phys. Earth Planet. Inter. 126, 11-25 (2001).
[48] Thole, B. T., Carra, P., Sette, F. & van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 68, 1943-1946 (1992).
[49] Maesaka, A., Ishii, S. & Okabe, A. Transmission electron microscopy analysis of crystallographic transition from fcc to fct on PtMn spin valves. J. Appl. Phys. 88, 3982-3987 (2000).
[50] Gao, Y., Wang, Z. & Whang, S. Deformation behavior in L10-type FePt compound. Mater. Sci. Eng. A 192, 53{58 (1995).
[51] Meyer, G. & Thiele, J. Eective electron-density dependence of the magnetocrystalline anisotropy in highly chemically ordered pseudobinary (Fe1-xMnx)Pt alloys. J. Magn.Magn. Mater 65, 159{166 (1987).
[53] Lai, C. & Ho, C. Improvement of magnetic properties of FePt nanoparticles by adding Mn. J. Appl. Phys. 97, 10J314 (2005).
[54] Weisheit, M., Schultz, L. & Fahler, S. Textured growth of highly coercive L10 ordered FePt thin films on single crystalline and amorphous substrates. J. Appl. Phys. 95, 7489{7491 (2004).
[55] Davies, J. E., Hellwig, O., Fullerton, E. E. & Liu, K. Temperature-dependent magnetization reversal in (Co/Pt)/Ru multilayers. Phys. Rev. B 77, 014421 (2008).
[56] Suess, D. Multilayer exchange spring media for magnetic recording. Appl. Phys. Lett. 89, 113105 (2006).
[57] Suess, D., Fidler, J., Zimanyi, G., Schre
, T. & Visscher, P. Thermal stability of graded exchange spring media under the influence of externalfields. Appl. Phys. Lett. 92, 173111 (2008).
[58] Zimanyi, G. T. Graded media: Optimization and energy barriers (invited). J. Appl. Phys. 103, 07F543 (2008).
[59] Suess, D., Lee, J., Fidler, J. & Schre, T. Exchange-coupled perpendicular media. J. Magn. Magn. Mater 321, 545-554 (2009).
[60] Majkrzak, C. Polarized neutron reflectometry. Physica B 173, 75-88 (1991).
[61] Moon, R., Riste, T. & Koehler,W. Polarization analysis of thermal-neutron scattering. Phys. Rev. 181, 920 (1969).
[62] Kirby, B. J. et al. Vertically graded anisotropy in Co/Pd multilayers. Phys. Rev. B 81, 100405 (2010).