研究生: |
管泓翔 Guan, Hong-Hsiang |
---|---|
論文名稱: |
Structural and functional studies of P-III SVMPs from Naja atra P-III型台灣眼鏡蛇金屬蛋白酶(SVMP)之結構與功能關係研究 |
指導教授: |
陳俊榮
Chen, Chun-Jung 吳文桂 Wu, Wen-guey |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 台灣眼鏡蛇 、金屬蛋白酶 、雙硫鍵 |
外文關鍵詞: | Naja atra, SVMP, disulfide bond pairs, ADAM, pH jump |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
ADAMalysin家族是在結構上是具有M (金屬酶蛋白功能區)、D(integrin結合功能區)與C (富含cysteine功能區)三個功能區的蛋白家族。ADAM (a disintegrin and metalloprotease)與P-III SVMP都是屬於這個家族重要成員,其中ADAM在人類的生理功能上扮演很重要的角色,舉例來說,很多文獻的證據顯示, ADAM對於一些人類的重大疾病如癌症的形成、氣喘、阿茲海默症、SARS (嚴重呼吸道症候群)等,都扮演其重要的生理角色。雖然這類蛋白質的重要性是已被公認,不過因為這類蛋白具有許多的cysteine胺基酸並且是一類細胞膜上的膜蛋白,在蛋白質的重組表現上有其困難性,所以到目前為止還沒有完整人類ADAM的結構被發表(ADAM22 細胞膜外的結構在2009年被決定)。而蛇類金屬蛋白酶的結構已被廣泛用來模擬ADAM在細胞膜表面上的行為模式。這可回推到2006年日本的研究團隊發表了第一個P-III型的蛇毒金屬酶蛋白 (VAP1) 結構並利用其模擬出ADAM的C型模型,用來表現ADAM在細胞膜表面如何辨認與裁切其受質。在這篇研究中,我們從台灣眼鏡蛇中純化、定序並決定出兩個全新的 P-III型的蛇毒金屬酶蛋白的結構- atragin 和K-like。Atragin也是屬於C型結構,而K-like呈現出一個全新的I型結構。這個明顯的結構差異主要歸因於在D功能區上雙硫鍵配對形式,這個發現也證明ADAMalysin家族中的蛋白是有可能利用其D功能區上不同的雙硫鍵配對形式來調整其M和C功能區的相對位置,進而在細胞膜表面呈現出不同的受質辨認與裁切行為。另外,這兩個蛇毒蛋白對於TNF□(腫瘤壞死因子)的釋放以及細胞移動的抑制性呈現出截然不同的特性。在這篇研究中指出這兩個蛇毒蛋白對於TNF□(腫瘤壞死因子)的釋放有不同的活性表現主要是來自於其M (金屬酶蛋白功能區) 活性區中的結構差異所造成;另外對於細胞移動的抑制性的差異則可能來自於在C (富含cysteine功能區)中的HVR(結構高度變異區)的結構差異。除此之外,我們還觀察到在atragin活性區中鋅的結合胺基酸 (組胺酸,Histidine)的結構改變和一個Met環的結構改變是和pH有關,而這些改變能夠解釋為何金屬酶蛋白在蛇囊(酸性環境)中,只有非常小的活性來達到毒蛇自我保護的機制。
之前的研究已經顯示atragin能夠抑制傷口愈合,主要是透過與細胞膜上整合素(integrin αvβ3)的結合。到目前為止,沒有一個non-□I類的整合素和沒有RGD蛋白的複合結構被發表,所以決定這個複合物的結構是一個很好的研究方向,不過在經過一連串的嘗試後並沒辦法得到atragin和integrin αvβ3的複合物晶體,於是利用電子顯微鏡、分子表現蛋白功能區、小片段的蛋白鏈與整合素結合實驗以及電腦程式的模擬實驗,提出一個atragin與整合素(integrin αv□β3)的結合模型。
Abstract
The structures of snake venom metalloproteases (SVMPs) are proposed to be a useful model for an understanding of the structure and functional relationship of ADAM (a disintegrin and metalloprotease), a membrane-anchored protein responsible for the growth factor releasing, neuro/myogenesis and involved in cancer, Alzheimer’s and other human diseases because full-length human ADAM structures are not available now. For instance, crystal structures of three P-III SVMPs have indicated the important role of a C-shaped scaffold for substrate recognition and the shedding process of ADAM. As ADAM is known to have diverse functions, additional structural and functional study on diverse SVMP is expected to illuminate not only the mechanisms of ADAM’s action but also the venom complexity, and lead to a prospective toxin-based drug discovery. From Naja atra elapid venom, we have purified, sequenced and determined the X-ray structures of two new P-III SVMP- atragin and kaouthiagin-like (K-like). Although the monomeric structure of atragin exhibits folding similar to a known C-shaped topology of a disulfide-bridged VAP1 homodimer from C. atrox viperid venom, K-like adopts an I-shaped conformation because of the distinct disulfide pattern of the disintegrin-like (D) domain. K-like, similar to ADAM17, exhibits enzymatic specificity toward pro-TNFα with less inhibition of cell migration, but atragin shows the opposite effect. The specificity of enzymatic activity is indicated to be dominated mainly by the local structures of SVMP in the metalloprotease (M) domain, whereas the HVR region in the cysteine-rich (C) domain is involved in cell-migration activity. We also demonstrate a pH-dependent enzymatic activity of atragin that we correlate with the structural dynamics of a Zn2+-binding motif and the Met turn based on the crystal structures determined with a novel pH-jump method. This structural variation provides a basis for the lack of proteolytic activity of SVMP in a gland. Together the local structure and the combinatorial arrangement of MDC domains in SVMPs play roles in their diverse activities. ADAM might adopt a similar strategy for the shedding of a specific target available on the surface of the cell membrane.
In addition, atragin was identified to inhibit the wound healing via the binding with integrin αvβ3 in previous research. It is of interest to study the binding mode between atragin and integrin αvβ3. With crystallography, I did not get the complex crysal of integrin αvβ3 in complex with atragin because of the large sizes of the two molecules and the difficult obtainment of large amount of integrin αvβ3. I therefore utilized other indirect methods such as electron microscope, overexpression and binding assays of key domains, peptide mapping, and computer simulations to build one docking model of atragin and integrin αvβ3.
References
Adair, B.D., Xiong, J.P., Maddock, C., Goodman, S.L., Arnaout, M.A., and Yeager, M., 2005. Three-dimensional EM structure of the ectodomain of integrin {alpha}V{beta}3 in a complex with fibronectin. J Cell Biol 168, 1109-18.
Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., Yoshinaka, T., Ohmoto, H., Node, K., Yoshino, K., Ishiguro, H., Asanuma, H., Sanada, S., Matsumura, Y., Takeda, H., Beppu, S., Tada, M., Hori, M., and Higashiyama, S., 2002. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8, 35-40.
Barczyk, M., Carracedo, S., and Gullberg, D., 2010. Integrins. Cell Tissue Res 339, 269-80.
Blobel, C.P., Myles, D.G., Primakoff, P., and White, J.M., 1990. Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J Cell Biol 111, 69-78.
Bode, W., Gomis-Ruth, F.X., and Stockler, W., 1993. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the 'metzincins'. FEBS Lett 331, 134-40.
Bridges, L.C., and Bowditch, R.D., 2005. ADAM-Integrin Interactions: potential integrin regulated ectodomain shedding activity. Curr Pharm Des 11, 837-47.
Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., and Warren, G.L., 1998. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-21.
Calvete, J.J., Juarez, P., and Sanz, L., 2007. Snake venomics. Strategy and applications. J Mass Spectrom 42, 1405-14.
Calvete, J.J., Jurgens, M., Marcinkiewicz, C., Romero, A., Schrader, M., and Niewiarowski, S., 2000. Disulphide-bond pattern and molecular modelling of the dimeric disintegrin EMF-10, a potent and selective integrin alpha5beta1 antagonist from Eristocophis macmahoni venom. Biochem J 345 Pt 3, 573-81.
CCP4, 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-3.
Costa, E.P., and Santos, M.F., 2004. Jararhagin, a snake venom metalloproteinase-disintegrin, stimulates epithelial cell migration in an in vitro restitution model. Toxicon 44, 861-70.
Fox, J.W., and Bjarnason, J.B., 1995. Atrolysins: metalloproteinases from Crotalus atrox venom. Methods Enzymol 248, 368-87.
Fox, J.W., and Solange, M.T.S., 2005. Structural considerations of the snake venom metalloproteinases,key members of the M12 reprolysin family of metalloproteinases. Toxicon 45, 969-985.
Fox, J.W., and Serrano, S.M., 2008. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275, 3016-30.
Fujii, Y., Okuda, D., Fujimoto, Z., Horii, K., Morita, T., and Mizuno, H., 2003. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J Mol Biol 332, 1115-22.
Gao, R., Manjunatha Kini, R., and Gopalakrishnakone, P., 2002. A novel prothrombin activator from the venom of Micropechis ikaheka: isolation and characterization. Arch Biochem Biophys 408, 87-92.
Garcia, L.T., Parreiras e Silva, L.T., Ramos, O.H., Carmona, A.K., Bersanetti, P.A., and Selistre-de-Araujo, H.S., 2004. The effect of post-translational modifications on the hemorrhagic activity of snake venom metalloproteinases. Comp Biochem Physiol C Toxicol Pharmacol 138, 23-32.
Gomis-Ruth, F.X., 2003. Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24, 157-202.
Haga, S., Yamamoto, N., Nakai-Murakami, C., Osawa, Y., Tokunaga, K., Sata, T., Yamamoto, N., Sasazuki, T., and Ishizaka, Y., 2008. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc Natl Acad Sci U S A 105, 7809-14.
Hege, T., and Baumann, U., 2001. The conserved methionine residue of the metzincins: a site-directed mutagenesis study. J Mol Biol 314, 181-6.
Hinkle, C.L., Sunnarborg, S.W., Loiselle, D., Parker, C.E., Stevenson, M., Russell, W.E., and Lee, D.C., 2004. Selective roles for tumor necrosis factor alpha-converting enzyme/ADAM17 in the shedding of the epidermal growth factor receptor ligand family: the juxtamembrane stalk determines cleavage efficiency. J Biol Chem 279, 24179-88.
Hsu, C.C., Wu, W.B., Chang, Y.H., Kuo, H.L., and Huang, T.F., 2007. Antithrombotic effect of a protein-type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol 72, 984-92.
Hur, E., Pfaff, S.J., Payne, E.S., Gron, H., Buehrer, B.M., and Fletterick, R.J., 2004. Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2, E274.
Igarashi, T., Araki, S., Mori, H., and Takeda, S., 2007. Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins. FEBS Lett 581, 2416-22.
Ito, M., Hamako, J., Sakurai, Y., Matsumoto, M., Fujimura, Y., Suzuki, M., Hashimoto, K., Titani, K., and Matsui, T., 2001. Complete amino acid sequence of Kaouthiagin ,a novel cobra venom metalloproteinase with two disintegrin-like sequence. Biochemistry 40, 4503-4511.
Janes, P.W., Saha, N., Barton, W.A., Kolev, M.V., Wimmer-Kleikamp, S.H., Nievergall, E., Blobel, C.P., Himanen, J.P., Lackmann, M., and Nikolov, D.B., 2005. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291-304.
Kamiguti, A.S., Hay, C.R., and Zuzel, M., 1996. Inhibition of collagen-induced platelet aggregation as the result of cleavage of alpha 2 beta 1-integrin by the snake venom metalloproteinase jararhagin. Biochem J 320 ( Pt 2), 635-41.
Kamiguti, A.S., Gallagher, P., Marcinkiewicz, C., Theakston, R.D., Zuzel, M., and Fox, J.W., 2003. Identification of sites in the cysteine-rich domain of the class P-III snake venom metalloproteinases responsible for inhibition of platelet function. FEBS Lett 549, 129-34.
Li, S., Wang, J., Zhang, X., Ren, Y., Wang, N., Zhao, K., Chen, X., Zhao, C., Li, X., Shao, J., Yin, J., West, M.B., Xu, N., and Liu, S., 2004. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem J 384, 119-27.
Lieber, T., Kidd, S., and Young, M.W., 2002. kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 16, 209-21.
Lin, Y.H., Lee, S.C., Chang, P.Y., Rajan, P.K., Sue, S.C., and Wu, W.G., 1999. Heparin binding to cobra basic phospholipase A2 depends on heparin chain length and amino acid specificity. FEBS Lett 453, 395-9.
Liu, H., Shim, A.H., and He, X., 2009. Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: insights on ADAM function. J Biol Chem 284, 29077-86.
Lu, Z., Ott, G.R., Anand, R., Liu, R.Q., Covington, M.B., Vaddi, K., Qian, M., Newton, R.C., Christ, D.D., Trzaskos, J., and Duan, J.J., 2008. Potent, selective, orally bioavailable inhibitors of tumor necrosis factor-alpha converting enzyme (TACE): discovery of indole, benzofuran, imidazopyridine and pyrazolopyridine P1' substituents. Bioorg Med Chem Lett 18, 1958-62.
Marques-Porto, R., Lebrun, I., and Pimenta, D.C., 2008. Self-proteolysis regulation in the Bothrops jararaca venom: the metallopeptidases and their intrinsic peptidic inhibitor. Comp Biochem Physiol C Toxicol Pharmacol 147, 424-33.
Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G.P., Bartunik, H., Ellestad, G.A., Reddy, P., Wolfson, M.F., Rauch, C.T., Castner, B.J., Davis, R., Clarke, H.R., Petersen, M., Fitzner, J.N., Cerretti, D.P., March, C.J., Paxton, R.J., Black, R.A., and Bode, W., 1998. Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci U S A 95, 3408-12.
Migaki, G.I., Kahn, J., and Kishimoto, T.K., 1995. Mutational analysis of the membrane-proximal cleavage site of L-selectin: relaxed sequence specificity surrounding the cleavage site. J Exp Med 182, 549-57.
Monaco, H.L., Zanotti, G., Spadon, P., Bolognesi, M., Sawyer, L., and Eliopoulos, E.E., 1987. Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2.5 A resolution. J Mol Biol 197, 695-706.
Moss, M.L., Jin, S.L., Milla, M.E., Bickett, D.M., Burhart, W., Carter, H.L., Chen, W.J., Clay, W.C., Didsbury, J.R., and Hassler, D., 1997. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature 385, 733-736.
Moura-da-Silva, A.M., Laing, G.D., Paine, M.J., Dennison, J.M., Politi, V., Crampton, J.M., and Theakston, R.D., 1996. Processing of pro-tumor necrosis factor-alpha by venom metalloproteinases: a hypothesis explaining local tissue damage following snake bite. Eur J Immunol 26, 2000-5.
Muniz, J.R., Ambrosio, A.L., Selistre-de-Araujo, H.S., Cominetti, M.R., Moura-da-Silva, A.M., Oliva, G., Garratt, R.C., and Souza, D.H., 2008. The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups. Toxicon 52, 807-16.
O'Keefe, M.C., Caporale, L.H., and Vogel, C.W., 1988. A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J Biol Chem 263, 12690-7.
Odell, G.V., Ferry, P.C., Vick, L.M., Fenton, A.W., Decker, L.S., Cowell, R.L., Ownby, C.L., and Gutierrez, J.M., 1998. Citrate inhibition of snake venom proteases. Toxicon 36, 1801-6.
Oganesyan, N., Kim, S.H., and Kim, R., 2005. On-column protein refolding for crystallization. J Struct Funct Genomics 6, 177-82.
Otwinowski, Z., and Minor, W., 1997. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
Pan, D., and Rubin, G.M., 1997. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271-280.
Papiz, M.Z., Sawyer, L., Eliopoulos, E.E., North, A.C., Findlay, J.B., Sivaprasadarao, R., Jones, T.A., Newcomer, M.E., and Kraulis, P.J., 1986. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324, 383-5.
Peschon, J.J., Slack, J.L., Reddy, P., Stocking, K.L., Sunnarborg, S.W., Lee, D.C., Russell, W.E., Castner, B.J., Johnson, R.S., Fitzner, J.N., Boyce, R.W., Nelson, N., Kozlosky, C.J., Wolfson, M.F., Rauch, C.T., Cerretti, D.P., Paxton, R.J., March, C.J., and Black, R.A., 1998. An essential role for ectodomain shedding in mammalian development. Science 282, 1281-4.
Pinto, A.F., Terra, R.M., Guimaraes, J.A., and Fox, J.W., 2007. Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain. Arch Biochem Biophys 457, 41-6.
Prenzel, N., Zwick, E., Dau, H., Leserer, M., Abraham, R., Wallasch, C., and Ullrich, A., 1999. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884-888.
Raab, G., and Klagsbrun, M., 1997. Heparin-binding EGF-like growth factor. Biochim Biophys Acta 1333, F179-99.
Ramos, O.H.P., and Selistre-de-Araujo, H.S., 2004. Comparative analysis of the catalytic domain of hemorrhagic and non-hemorrhagic snake venom metallopeptidases using bioinformatic tools. Toxicon 44, 529-538.
Rosenblum, G., Van den Steen, P.E., Cohen, S.R., Grossmann, J.G., Frenkel, J., Sertchook, R., Slack, N., Strange, R.W., Opdenakker, G., and Sagi, I., 2007. Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase B. Structure 15, 1227-36.
Sadhukhan, R., Santhamma, K.R., Reddy, P., Peschon, J.J., Black, R.A., and Sen, I., 1999. Unaltered cleavage and secretion of angiotensin-converting enzyme in tumor necrosis factor-alpha-converting enzyme-deficient mice. J Biol Chem 274, 10511-6.
Sanz, L., Ayvazyan, N., and Calvete, J.J., 2008. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics 71, 198-209.
Serrano, S.M., Wang, D., Shannon, J.D., Pinto, A.F., Polanowska-Grabowska, R.K., and Fox, J.W., 2007. Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation. FEBS J 274, 3611-21.
Serrano, S.M., Kim, J., Wang, D., Dragulev, B., Shannon, J.D., Mann, H.H., Veit, G., Wagener, R., Koch, M., and Fox, J.W., 2006. The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting. J Biol Chem 281, 39746-56.
Souza, D.H., Selistre-de-Araujo, H.S., Moura-da-Silva, A.M., Della-Casa, M.S., Oliva, G., and Garratt, R.C., 2001. Crystallization and preliminary X-ray analysis of jararhagin, a metalloproteinase/disintegrin from Bothrops jararaca snake venom. Acta Crystallogr D Biol Crystallogr 57, 1135-7.
Sue, S.C., Chien, K.Y., Huang, W.N., Abraham, J.K., Chen, K.M., and Wu, W.G., 2002. Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J Biol Chem 277, 2666-73.
Takagi, J., 2007. Structural basis for ligand recognition by integrins. Curr Opin Cell Biol 19, 557-64.
Takeda, S., Igarashi, T., and Mori, H., 2007. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. FEBS Lett 581, 5859-64.
Takeda, S., Igarashi, T., Mori, H., and Araki, S., 2006. Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold. EMBO J 25, 2388-96.
Tang, P., Huang, M.C., and Klostergaard, J., 1996. Length of the Linking Domain of Human pro-Tumor Necrosis Factor Determines the Cleavage Processing. Biochemistry 35, 8226-8233.
Tsakadze, N.L., Sithu, S.D., Sen, U., English, W.R., Murphy, G., and D'Souza, S.E., 2006. Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 281, 3157-64.
Usami, Y., Fujimura, Y., Miura, S., Shima, H., Yoshida, E., Yoshioka, A., Hirano, K., Suzuki, M., and Titani, K., 1994. A 28 kDa-protein with disintegrin-like structure (jararhagin-C) purified from Bothrops jararaca venom inhibits collagen- and ADP-induced platelet aggregation. Biochem Biophys Res Commun 201, 331-9.
Van Eerdewegh, P., Little, R.D., Dupuis, J., Del Mastro, R.G., Falls, K., Simon, J., Torrey, D., Pandit, S., McKenny, J., Braunschweiger, K., Walsh, A., Liu, Z., Hayward, B., Folz, C., Manning, S.P., Bawa, A., Saracino, L., Thackston, M., Benchekroun, Y., Capparell, N., Wang, M., Adair, R., Feng, Y., Dubois, J., FitzGerald, M.G., Huang, H., Gibson, R., Allen, K.M., Pedan, A., Danzig, M.R., Umland, S.P., Egan, R.W., Cuss, F.M., Rorke, S., Clough, J.B., Holloway, J.W., Holgate, S.T., and Keith, T.P., 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426-30.
Waldhauer, I., Goehlsdorf, D., Gieseke, F., Weinschenk, T., Wittenbrink, M., Ludwig, A., Stevanovic, S., Rammensee, H.G., and Steinle, A., 2008. Tumor-associated MICA is shed by ADAM proteases. Cancer Res 68, 6368-76.
Wang, S.H., Shen, X.C., Yang, G.Z., and Wu, X.F., 2003. cDNA cloning and characterization of Agkistin, a new metalloproteinase from Agkistrodon halys. Biochem Biophys Res Commun 301, 298-303.
Wang, Y.L., Goh, K.X., Wu, W.G., and Chen, C.J., 2004. Purification, crystallization and preliminary X-ray crystallographic analysis of a cysteine-rich secretory protein (CRISP) from Naja atra venom. Acta Crystallogr D Biol Crystallogr 60, 1912-5.
Ward, C.M., Vinogradov, D.V., Andrews, R.K., and Berndt, M.C., 1996. Characterization of mocarhagin,a cobra venom metalloproteinase from Naja Mocambique Mocambique ,and related proteins from other elpidae venoms. Toxicon 34, 1203-1206.
Wei, J.F., Mo, Y.Z., Qiao, L.Y., Wei, X.L., Chen, H.Q., Xie, H., Fu, Y.L., Wang, W.Y., Xiong, Y.L., and He, S.H., 2006. Potent histamine-releasing activity of atrahagin, a novel snake venom metalloproteinase. Int J Biochem Cell Biol 38, 510-20.
Whittaker, C.A., and Hynes, R.O., 2002. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13, 3369-87.
Wu, E., Croucher, P.I., and McKie, N., 1997. Expression of members of the novel membrane linked metalloproteinase family ADAM in cells derived from a range of haematological malignancies. Biochem Biophys Res Commun 235, 437-42.
Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L., and Arnaout, M.A., 2002. Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151-155.
Yang, C.C., and Chang, L.S., 1988. Role of the N-terminal region in phospholipases A2 from Naja naja atra (Taiwan cobra) and Naja nigricollis (spitting cobra) venoms. Toxicon 26, 721-31.
Zhou, Q., Dangelmaier, C., and Smith, J.B., 1996. The hemorrhagin catrocollastatin inhibits collagen-induced platelet aggregation by binding to collagen via its disintegrin-like domain. Biochem Biophys Res Commun 219, 720-6.
Zhu, Z., Gao, Y., Zhu, Z., Yu, Y., Zhang, X., Zang, J., Teng, M., and Niu, L., 2009. Structural basis of the autolysis of AaHIV suggests a novel target recognizing model for ADAM/reprolysin family proteins. Biochem Biophys Res Commun 386, 159-164.