研究生: |
陳哲楷 Jhe-Kai Chen |
---|---|
論文名稱: |
高加減速PCB鑽孔機進給系統之設計與分析 |
指導教授: |
雷衛台
Wei-Tai Lei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 工具機 、進給系統 、模態分析 |
外文關鍵詞: | Machine Tools, Feeddrive, Modaling |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於高速高精度的工具機系統而言,進給系統的加速度提升後,慣性力所產生的振動量也隨之增加,因此為了維持機台的精度,必須對進給系統的動態及剛性弱點進行分析研究,確認需加強的元件部位並建立設計的規範。本研究建立了完整的進給系統動態模型,考慮滾珠螺桿螺帽、止推軸承、聯軸器及螺栓等元件對於進給系統動態的影響,以模擬方式確認進給系統的剛性弱點,作為設計進給驅動系統的參考。
進給系統在加速與減速時因受力的方向不同,其力流線也不相同,當系統設計不佳而造成較弱的剛性集中加速或減速的力流線上時,會使整體進給系統的振動量增加,影響機台的精度。本研究依加速及減速的力流線建立相對應的模型及參數資料,利用模擬方式瞭解進給系統受到的影響。
當進給系統有複數以上的驅動軸且其驅動軸以分離方式配置時,分離的驅動軸間會產生驅動軸方向感測器無法量測到的誤差,例如X軸在刀具端而Y軸在工件端,當X軸的Y方向有足以影響精度的振動量時,此誤差不僅會反應在最後的加工結果,也無法由Y軸的感測器量測並進行補償。本研究以典型的高速鑽孔機為例,建立合理的動態模型並配合前述之進給系統模型進行模擬分析,以瞭解此誤差產生的影響。
綜合以上所述,本研究提供了一套完整的進給系統動態模型,除了可幫助系統設計者找出進給系統的剛性弱點,也讓設計者於設計之初有所依據,減少設計原型機的測試與修改時間。
[1] M. S. Kim, S. C. Chung, A systematic approach to design high-performance feed drive systems, International Journal of Machine Tools and Manufacture 45 (2005) 1421-1435.
[2] A. Dequidt, J.M. Castelain, E. Valdès, Mechanical pre-design of high performance motion servomechanisms, Mechanism and Machine Theory 35 (2000) 1047-1063.
[3] C.Y. Chen, C.C. Cheng, Integrated design for a mechatronic feed drive system of machine tools, Proceeding of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, 2005, pp. 588-593.
[4] H. Gross, Electrical feed drives for machine tools, John Wiley & Sons Ltd., New York, 1983.
[5] M. Weck, Handbook of machine tools Volume 3, John Wiley & Sons Ltd., New York, 1984.
[6] G. Reinhart, M. Weissenberger, Multibody simulation of machine tools as mechatronic systems for optimization of motion dynamics in the design process, Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999, pp. 605-610.
[7] K. Erkorkmaz, Y. Altintas, High speed CNC system design. Part II: modeling and identification of feed drives, International Journal of Machine Tools and Manufacture 41 (10) (2001) 1487-1509.
[8] G. Pritschow, W. Philipp, Research on the efficiency of feedforward controllers in M direct drives, Annals of the CIRP 41 (1) (1992) 411-415.
[9] G. Pritschow, A comparison of linear and conventional electromechanical drives, Annals of the CIRP 47 (2) (1998) 541-548.
[10] 宋漢釧, CNC工具機高速進給軌跡精度改進研究, 碩士論文, 國立清華大學動力機械工程研究所, 1998.
[11] 張香鈜, 扭力驅動模式下之運動控制研究, 碩士論文, 國立清華大學動力機械工程研究所
[12] 吳嘉晉, 進給驅動系統之動態模擬與分析, 碩士論文, 國立清華大學動力機械工程研究所, 2003.
[13] M. Ebrahimi, R. Whalley, Analysis, modeling and simulation of stiffness in machine tool drives, Computers and Industrial Engineering 38 (2000) 93-105.
[14] G. Younkin, Modeling machine tool feed servo drives using simulation techniques to predict performance, IEEE Transactions on Industry Applications 27 (2) (1991) 268-274.
[15] 陳慶盈, 工具機進給系統動態分析與測試, 碩士論文, 大葉大學機械工程研究所, 2000.
[16] P. Poignet, M. Gautier, W. Khalil, Modeling, control and simulation of high speed machine tool axes, Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999, pp. 617-622.
[17] B. Armstrong-Helouvry, P. Dupont, C. Canudas de Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica 30 (7) (1994) 1083-1138.
[18] 周昕, 摩擦力干擾下精密定位系統之控制策略, 碩士論文, 國立清華大學動力機械研究所, 1997.
[19] C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction, IEEE Transactions on Automatic Control 40 (3) (1995) 419-425.
[20] P. Doupont, Avoiding stick-slip in position and force control through feedback, Proceedings of 1991 IEEE International Conference on Robotics and Automation, Sancramento, California, 1991, Vol. 2, pp. 1470-1475.
[21] 工研院機械所, 工具機設計實務與軟體應用, 非常取向股份有限公司, 1994.
[22] M. Weck, Werkzeugmaschinen-Atlas I, VDI-Verlag, Germany, 1991.
[23] A.H. Slocum, Precision machine design, Prentice Hall, New Jersey, 1992.
[24] S. Bolognani, A. Venturato, M. Zigliotto, Theoretical and experimental comparison of speed controllers for elastic two-mass-systems, Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual 3 (2000) 1087-1092.
[25] O. Zirn, A. Monat, T. Schöller, Control of direct driven feed axes with flexible structural components, Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005 4 (2005) 2449-2455.
[26] O. Zirn, S. Weikert, F. Rehsteiner, Design and optimization of fast axis feed drives using nonlinear stability analysis, Annals of the CIRP 45 (1) (1996) 363-368.
[27] G. Brandenburg, U. Schafer, Influence and adaptive compensation of simultaneously acting backlash and coulomb friction in elastic two-mass systems of robots and machine tools, Proceedings of ICCON `89 IEEE International Conference on Control and Applications, 1989, pp. 407-410.
[28] C.C. Cheng, J.S. Shiu, Transient vibration analysis of a high-speed feed drive system, Journal of Sound and Vibration 239 (3) (2001) 489-504.
[29] 許佳賢, 工具機進給系統之動態分析, 碩士論文, 國立中正大學機械工程研究所, 1999.