簡易檢索 / 詳目顯示

研究生: 賴韋仁
Lai, Wei-Jen
論文名稱: 空間電荷限制電晶體應用於主動式壓力感測元件
Space-Charge-Limited Transistor and its Application on Active Pressure Sensor
指導教授: 洪勝富
Horng, Sheng-Fu
孟心飛
Meng, Hsin-Fei
冉曉雯
Zan, Hsiao-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 79
中文關鍵詞: 主動式垂直式電晶體對壓力敏感的橡膠反應時間
外文關鍵詞: Active, Vertical transistor, Pressure sensitive rubber, Response time
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於大面積的陣列半導體元件可用於移動的機器、人體上或是用於其他生物體的外面或裡面的一些非平面的表面上,所以大面積的陣列半導體元件吸引了許多人的目光。這種巨形電子元件是由許多東西組合而成的:包含可饒式基板、驅動用的電晶體陣列以及偵測器的陣列。這些偵測器是用來收集外界的資訊,另外電晶體則是用來控制此主動驅動陣列的開關。
    本論文旨在發展一種壓力感測元件,藉由垂直式空間電荷限制電晶體整合一層對壓力敏感的橡膠。文中詳細介紹兩種空間電荷限制電晶體,並針對其製程與工作原理討論。首先,初代空間電荷限制電晶體,其輸出電流為27mA/cm2,開關比為385,電流增益約為104。第二部份為新型空間電荷限制電晶體,此結構具有完整絕緣體包覆住柵極,故能大幅降低off current提高開關比,其輸出電流為5.15mA/cm2,開關比大幅提升至10775。將空間電荷限制電晶體與壓力感測層
    整合成主動式感測元件,當壓力施加於壓力感測層時輸出電流有很快速的反應,其反應時間約22毫秒。


    中文摘要------------------------------------------------------------------------------------------I 英文摘要-----------------------------------------------------------------------------------------II 致謝----------------------------------------------------------------------------------------------III 目錄----------------------------------------------------------------------------------------------IV Chapter I 序論----------------------------------------------------------------------------------1 1-1 前言------------------------------------------------------------------------------------1 1-2 研究動機與方向---------------------------------------------------------------------2 1-3 論文架構------------------------------------------------------------------------------3 Chapter II空間電荷限制電晶體原理介紹-------------------------------------------------4 2-1 空間電荷限制電晶體之結構------------------------------------------------------ 4 2-1-1 初代空間電荷限制電晶體-------------------------------------------------4 2-1-2 新型空間電荷限制電晶體-------------------------------------------------5 2-2 操作方式------------------------------------------------------------------------------ 5 2-3材料介紹與選擇-----------------------------------------------------------------------6 2-3-1 有機高分子材料簡介-------------------------------------------------------6 2-3-2 電洞傳輸材料----------------------------------------------------------------7 2-3-3 絕緣層材料-------------------------------------------------------------------9 2-4 真空管原理--------------------------------------------------------------------------10 2-5 金屬半導體接面--------------------------------------------------------------------10 2-6有機共軛高分子載子傳輸理論---------------------------------------------------13 Chapter III 實驗製程與實驗設計---------------------------------------------------------16 3-1 初代空間電荷限制電晶體製作流程--------------------------------------------16 3-1-1 ITO基板蝕刻----------------------------------------------------------------16 3-1-2 ITO clean---------------------------------------------------------------------17 3-1-3 PEDOT:PSS成膜-----------------------------------------------------------17 3-1-4 主動區成膜----------------------------------------------------------------- 18 3-1-5 旋轉浸潤法----------------------------------------------------------------- 18 3-1-6 安置PS球-------------------------------------------------------------------18 3-1-7 柵極蒸鍍及去除PS球----------------------------------------------------19 3-1-8 主動區第二層-------------------------------------------------------------- 19 3-1-9 集極蒸鍍-------------------------------------------------------------------- 20 3-1-10 元件封裝-------------------------------------------------------------------20 3-2 新型空間電荷限制電晶體製作流程--------------------------------------------21 3-2-1 O2 Plasma處理--------------------------------------------------------------21 3-2-2絕緣層PVP成膜------------------------------------------------------------21 3-2-3 安置PS球-------------------------------------------------------------------21 3-2-4 柵極蒸鍍及去除PS球----------------------------------------------------22 3-2-5 去除PVP---------------------------------------------------------------------22 3-2-6 主動區成膜----------------------------------------------------------------- 22 3-2-7 集極蒸鍍-------------------------------------------------------------------- 23 3-2-8 元件封裝-------------------------------------------------------------------- 23 3-3 壓力感測器製作--------------------------------------------------------------------24 3-4空間電荷限制電晶體與壓力感測器之整合------------------------------------25 3-5 量測-----------------------------------------------------------------------------------26 3-6 實驗設計與構想--------------------------------------------------------------------27 Chapter IV 實驗結果與分析---------------------------------------------------------------28 4-1 初代空間電荷限制電晶體--------------------------------------------------------28 4-1-1 E-G Diode特性--------------------------------------------------------------29 4-1-2 孔洞狀柵極----------------------------------------------------------------- 31 4-1-3 孔洞大小與密度之影響-------------------------------------------------- 33 4-1-4 初代空間電荷限制電晶體之特性與探討----------------------------- 35 4-1-5無封裝下的Lifetime-------------------------------------------------------37 4-1-6 改善射極的注入----------------------------------------------------------- 38 4-1-7 射極金屬改變之電晶體特性與探討----------------------------------- 40 4-1-8 檢查PS球分佈對於射極金屬的改變----------------------------------42 4-2 新型空間電荷限制電晶體--------------------------------------------------------44 4-2-1 E-C Diode特性--------------------------------------------------------------45 4-2-2 絕緣層特性----------------------------------------------------------------- 47 4-2-3 孔洞狀柵極----------------------------------------------------------------- 49 4-2-4 主動區成膜----------------------------------------------------------------- 54 4-2-5 新型空間電荷限制電晶體之特性與探討----------------------------- 56 4-3 壓力感測器--------------------------------------------------------------------------58 4-3-1 受壓力之電性變化-------------------------------------------------------- 59 4-3-2 受壓力之反應時間-------------------------------------------------------- 61 4-4 整合初代電晶體與壓力感測器(確認基本電性)------------------------------63 4-4-1垂直整合----------------------------------------------------------------------65 4-4-2壓力測試(1kg/cm2)--------------------------------------------------------- 67 4-4-3壓力測試(0.5kg/cm2)-------------------------------------------------------69 4-5整合新型電晶體與壓力感測器(確認基本電性)------------ ------------------71 4-5-1垂直整合----------------------------------------------------------------------73 4-6 電晶體陣列--------------------------------------------------------------------------75 Chapter V 總結-------------------------------------------------------------------------------77 Reference----------------------------------------------------------------------------------------78

    【1】 Takao Someya, Tsuyoshi Sekitani, Shingo Iba, Yusaku Kato, Hiroshi
    Kawaguchi, and Takayasu Sakurai, "A large-area, flexible pressure sensor
    matrix with organic field-effect transistors for artificial skin applications",
    Proceedings of the National Academy of Sciences of the United States of
    America, Volume 101, Issue 27, pp. 9966-9970 (July 6, 2004).
    【2】 Self-aligned, vertical-channel, polymer field-effect transistors, N. Stutzmann,
    R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003).
    【3】 Vertical channel all-organic thin-film transistor, R. Parashkov, E. Becker,
    S. Hartmann, G. Ginev, D. Schneider, H. Krautwald, T. Dobbertin,
    D. Metzdorf, F. Brunetti, C. Schildknecht, A. Kammoun, M. Brandes,
    T. Riedl, H.-H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82, 4579
    (2003).
    【4】 Organic vertical-channel transistors structured using excimer laser, R.
    Parashkov, E. Becker, G. Ginev, T. Riedl, M. Brandes, H.-H. Johannes, and
    W.Kowalsky, Appl. Phys. Lett. 85, 5751 (2004).
    【5】 Organic-metal-semiconductor transistor with high gain, M. S. Meruvia, I. A.
    Hummelgen, M. L. Sartorelli, A. A. Pasa, and W. Schwarzacher, Appl. Phys.
    Lett. 84, 3978 (2004).
    【6】 Hibrid metal-based transistor with base of sulfonated polyaniline and fullerene
    emitter. W. J. da Silva, I. A. Hummelgen, R. M. Q. Mello, and D. Ma, Appl.
    Phys. Lett. 93, 053301 (2008).
    【7】 High gain in hybrid transistors with BAlq3/Alq3 isotype heterostructure emitter. M. Yi, J. Huang, D. Ma, and I. A. Hummelgen, Appl. Phys. Lett. 92, 243312 (2008).
    【8】 Polymer hot-carrier transistor, Y.C. Chao, S. L. Yang, H. F. Meng, and S. F.
    Horng, Appl. Phys. Lett. 87, 253508 (2005).
    【9】 Polymer hot-carrier transistor with low bandgap emiter, Y.C. Chao, M. H.
    Xie, M. Z. Dai, H. F. Meng, S. F. Horng, and C. S. Hsu, Appl. Phys. Lett.
    92, 093310 (2008).
    【10】 Polymer space-charge-limited transistor, Y.C. Chao, H. F. Meng, and S. F.
    Horng, Appl. Phys. Lett. 88, 223510 (2006).
    【11】 High-performance solution-processed polymer space-charge-limited transitor,
    Yu-Chiang Chao, Hsin-Fei Meng * , Sheng-Fu Horng, Chain-Shu Hsu,
    Organic Electronics, 9, 310-316 (2008)
    【12】 K. Kudo, S. Tanaka, M. Iizuka, and M. Nakamura, Thin Solid Films 438, 330
    (2003).
    【13】 Flexible organic static induction transistors using pentacene thin films,
    Y. Watanabe, and K. Kudo, Appl. Phys. Lett. 87, 223505 (2005).
    【14】 H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and
    A. J. Heeger,“Synthesis of Electrically Conducting Organic Polymers:
    Halogen Derivatives of Polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun. 578 (1977)
    【15】 K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic
    cells,”Chem. Mater. 16, 4533 (2004).
    【16】 Satoshi Hoshino, Manabu Yoshida, Sei Uemura, Takehito Kodzasa, Noriyuki
    Takada, Toshihide Kamata, and Kiyoshi Yase “Influence of moisture on
    device characteristics of polythiophene-based field-effect transistors ”
    J. Appl. Phys. 95, 5088 (2004)
    【17】 Susmita Pal, Arun K. Nandi “Cocrystallization Mechanism of
    Poly(3-hexylthiophenes) with Different Amount of Chain Regioregularity”
    Journal of Applied Polymer Science .3811-3820 , 6 , 101, (2006)
    【18】 H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard,
    B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E.W. Meijer,
    P. Herwig, D. M. de Leeuw “Two-dimensional charge transport in
    self-organized, high-mobility conjugated polymers” Nature 401, 685 (1999)
    【19】 H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B.
    M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer
    “Microstructure-mobility correlation in self-organised, conjugated polymer
    field-effect transistors ” Synth. Met. 111–112, 129 (2000)
    【20】 D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho ” Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors” Advanced Functional Materials 77-82 , 15 ( 2005)
    【21】 N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford,
    New York, 1940.
    【22】 S. Karg, M. Meier, and W. Riess, “Light-emitting diodes based on
    poly-p-phenylene-vinylene: I. Charge-carrier injection and transport,”
    J. Appl. Phys.82, 1951 (1997).
    【23】 R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
    【24】 Juo-Hao Li, Jinsong Huang, and Yang Yang ,“Improved hole-injection
    contact for top-emitting polymeric diodes” Appl. Phys. Lett. 90, 173505
    (2007)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE