簡易檢索 / 詳目顯示

研究生: 胡志帆
Chih-Fan Hu
論文名稱: 新型撓性壓力及觸覺感測陣列之研究
The Study of a Novel Flexible Pressure / Tactile Sensors Array
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 穿戴式智慧型輔具撓性壓力感測陣列
外文關鍵詞: Wearable intelligent device, Flexible pressure sensors array
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以往步態分析中,並無法直接由自身的輔具求得足底壓力分佈,必須藉由外部的感測器,如壓力板,以得到足部壓力或是地面反射力,乃至於肢體之動作。本研究將提出一嶄新的概念,即穿戴式及符合智慧型輔具之撓性壓力感測陣列,以突破傳統上離散的剛性矽質微壓力計在製造與封裝完成後,不易應用於一些穿戴式輔具的限制。經由本研究的實現,不但可免去購買昂貴設備的經費,更可擺脫空間限制,而將感測器的應用普及化;患者只需將感測器直接穿戴在身上,便可正確且迅速得到自身的生理訊號,以便即時監控、即時反應。


    In the past gait analysis, the distribution of the sole pressure cannot be got by the appliance put on patients; the sole pressure or the reaction force, even the physical movement can only be got by an outside sensor, for instance, the pressure board. This research will provide a brand-new concept, that is, the flexible pressure sensors array which is wearable and can be considered as an intelligence device. The concept is for breaking the limitation that, the dispersed rigid silicon-based micro pressure sensor has been hard to apply for some wearing device after fabrication and packaging traditionally. With the achievement of this research, not only cost for purchasing high-priced equipment can be saved, but space limit will no longer be a problem; therefore, application of sensor will be much more popular; all patients have to do is to put on the sensor, and they can get their own physical signals correctly and swiftly for monitoring and reacting in time.

    中文摘要 I 英文摘要 II 致謝 III 目錄 V 圖目錄 VII 表目錄 XII 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 壓力感測器 2 1-2.2 撓性感測器 6 1-3 研究目標 10 第二章 設計與分析 25 2-1 壓阻效應 25 2-2 惠斯同電橋 28 2-3 元件設計與模擬 29 第三章 製程與實驗 40 3-1 製程步驟 40 3-2 製程結果與問題改善 42 3-2.1 壓力感測器 42 3-2.2 撓性PDMS電路層 45 3-2.3 穿透晶圓之垂直式導線 47 第四章 量測與結果 63 4-1 壓力感測器量測 63 4-2 撓性感測器量測 66 4-3 圖形化資料擷取與分析 67 第五章 結論與未來工作 79 5-1 結論 79 5-2 未來工作 80 參考文獻 83

    [1] A. Dittmar, A. Lymeris, “Smart clothes and associated wearable devices for biomedical ambulatory monitoring,” Transducers’ 05, pp. 221-227, 2005.
    [2] F. Axisa, P.M. Schmitt, C. Gehin , G. Delhomme , E. McAdams , A. Dittmar, “Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention,” IEEE Trans Inf Technol Biomed., Vol. 9, pp. 325-336, 2005.
    [3] S.J. Morris, J.A. Paradiso, “Shoe-integrated sensor system for wireless gait analysis and real-time feedback,” EMBS/BMES Conference, Vol. 3, pp. 2468-2469, 2002.
    [4] E.F. Desseree-Calais, L.R. Legrand, “First Results of a Complete Marker-Free Methodology for Human Gait Analysis,” Engineering in Medicine and Biology 27th Annual Conference, pp. 7455-7458, 2005.
    [5] M. Tesconi, E. Pasquale Scilingo, P. Barba, D. De Rossi, “Wearable kinesthetic system for joint knee flexion-extension monitoring in gait analysis,” EMBS '06. 28th Annual International Conference, pp. 1497-1500, 2006.
    [6] http://www.tekscan.com
    [7] 李豪政, “活塞式鞋墊對減低足部壓力之效益研究,” 陽明大學醫學工程研究所碩士論文, 2000.
    [8] K.E. Petersen, “Silicon as a mechanical material,” Electron Devices, IEEE Transactions, Vol. 70, pp. 420-457, 1982.
    [9] R.T. Howe, R.S. Muller, K.J. Gabriel, and W.S.N. Trimmer, IEEE spectrum, Vol. 27, pp. 29-35, 1990.
    [10] 丁志明等, “微機電系統技術與應用,” 國科會精密儀器發展中心, 2003.
    [11] S.K. Clark and K.D. Wise, “Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, Vol. ED-26, pp. 1887-1896, 1979.
    [12] W.P. Eaton and J.H. Smith, “Micromachined pressure sensors: review and recent developments,” Smart Master., Struct. 6, pp. 530-539, 1997.
    [13] C. Ravariu, F. Ravariu, D. Dobrescu, L. Dobrescu, C. Codreanu, and M. Avram, “A designing roule for a pressure sensor with PZT layer,” Semiconductor Conference, Vol. 2, pp. 379-382, 2001.
    [14] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev, Vol. 94, pp. 42-49, 1954.
    [15] A. Gieles, “Submmiature silicon pressure transducers,” Solid-State Circuits Conference, Vol. 12, pp. 108-109, 1969.
    [16] T. N. Jackson, M.A. Tischler, and K.D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures,” Electron Device Letters, Vol. 2, pp. 44-45, 1981.
    [17] S. Sugiyama, K. Shimaoka, and O. Tabata, “Surface micromachined micro-diaphragm pressure sensors,” Transducers’ 91, pp. 188-191, 1991.
    [18] B. Folkmer,; P. Steiner, and W. Lang, “A pressure sensor based on a nitride membrane using single crystalline piezoresistors,” Transducers '95, Vol. 2, pp. 574-577, 1995.
    [19] F. Jiang, Y. C. Tai, K. Walsh, T. Tsao, G. B. Lee, and C. M. Ho, “ A Flexible MEMS Technology and Its First Application to Shear Stress Sensor Skin,” MEMS ’97, pp. 465-470, 1997.
    [20] F. Jiang, G. B. Lee, Y. C. Tai, and C. M. Ho, “A Flexible Micromachine-Based Shear-stress Sensor Array and Its Application to Separation-Point Detection,” Sens. Actuators A, Phys., Vol. 79, pp. 194-203, 2000.
    [21] D. J. Beebe and D. D. Denton, “A flexible polyimide-based package for silicon sensors,” Sens. Actuators A, Phys., Vol. 44, pp. 57-64, 1994.
    [22] S. Tung, S. R. Witherspoon, L. A. Roe, A. Silano, D. P. Maynard, and N. Ferraro, “A MEMS-based Flexible Sensor and Actuator System for Space Inflatable Structures,” Smart Materials and Structures, Vol. 10, pp. 1230-1239, 2001.
    [23] G. W. Xiao, P.C.H. Chan, A. Teng, J. Cai, and M.M.F. Yuen, “A pressure sensor using flip-chip on low-cost flexible substrate,” Electronic Components and Technology Conference, pp. 760-754, 2001.
    [24] Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, and K. Sato, “An active tactile sensor for detecting mechanical characteristics of contacted objects,” J. Micromech. Microeng., Vol. 16, pp. 1625-1632, 2006.
    [25] H. C. Lim, B. Schulkin, M. J. Pulickal, S. Liu, R. Petrova, G. Thomas, S. Wagner, K. Sidhu, and J. F. Federici, “Flexible membrane pressure sensor,” Sens. Actuators A, Phys., Vol. 119, pp. 332-335, 2005.
    [26] E. S. Hwang, Y. J. Kim, B. K. Ju, “Flexible polysilicon sensor array modules using “etch-release” packaging scheme,” Sens. Actuators A, Phys., Vol. 112, pp. 135-141, 2004.
    [27] Y. Xu, F. Jiang, Y. C. Tai, A. Huang, C. M. Ho, and S. Newbern, “Flexible shear-Stress sensor skin and its application to unmanned aerial vehicle,” Sens. Actuators A, Phys., Vol. 105, pp. 321-329, 2003.
    [28] N. Sato, K. Machida, H. Morimura, S. Shigematsu, K. Kudou, M. Yano, and H. Kyuragi, “MEMS fingerprint sensor immune to various finger surface conditions,” IEEE Trans. Electron Devices, Vol. 50, pp. 1109–1116, 2003.
    [29] H. K. Lee, S. I. Chang and E. Yoon, “A Capacitive Proximity Sensor in Dual Implementation with Tactile Imaging Capability on a Single Flexible Platform for Robot Assistant applications,” MEMS ’06, pp. 606-609, 2006.
    [30] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” PNAS, Vol. 101, pp. 9966-9970.
    [31] E. S. Hwang, J. H. Seo and Y. J. Kim, “A Polymer-based Flexible Tactile Sensor for Both Normal and Shear Load Detection ,” MEMS ’06, pp. 714-717, 2006.
    [32] J. H. Kim, J. I. Lee, H. J. Lee, Y. K. Park, M. S. Kim, D. I. Kang, ICRA 2005, “Design of Flexible Tactile Sensor Based on Three-Component Force and Its Fabrication,” pp. 2560-2581, 2005.
    [33] J. Engel, J. Chen, and C. Liu, “Development of polyimide flexible tactile sensor skin,” J. Micromech. Microeng., Vol. 13, pp.359-366, 2003.
    [34] T. Stieglitz, “Flexible Biomedical Microdevices with Double-Sided Electrode Arrangements for Neural Applications,” Sens. Actuators A, Phys., Vol. 90, pp. 203-211, 2001.
    [35] Y. H. Wen, G. Y. Yang, V. J. Bailey, G. Lin, W. C. Tang, and J. H. Keyak, “Mechanically robust micro-fabricated strain gauges for use on bones,” Microtechnology in Medicine and Biology, 2005., pp. 302-304, 2005.
    [36] S. A. Dayeh, D. P. Butler, and Z. Çelik-Butler, “Micromachined. infrared bolometers on flexible polyimide substrates,” Sensors and actuators. A, Physical, Vol. 118, pp. 49-56, 2005.
    [37] S. Han, Z. Y. Tan, K. Sato and M. Shikida, “Thermal Characterization of Micro Heater Arrays on a Polyimide Film Substrate for Fingerprint Sensing Applications,” J. Micromech. Microeng., Vol. 15, pp. 282-289, 2005.
    [38] C. Li, F.E. Sauser, R. Azizkhan, C.H. Ahn, and I. Papautsky, “Polymer flip-chip bonding of pressure sensors on flexible Kapton film for neonatal catheters,” J. Micromech. Microeng. , VOl. 15, pp.1729-1735, 2005.
    [39] K. Kim, K.R. Lee, Y.K. Kim, D.S. Lee, N.K. Cho, W.H. Kim, K.B. Park, H.D. Park, Y.K. Park, J.H. Kim, and J.J. Pak, “3-Axes Flexible Tactile Sensor Fabricated by Si Micromachining and Packaging Technology,” MEMS ’06, pp. 678-681, 2006.
    [40] R. B. Katragadda, Y. Xu, “A Novel Intelligent Textile Technology Based on Silicon Flexible Skins,” MEMS ’07, pp. 301-304, 2007.
    [41] H. K. Lee, S. I. Chang, K. H. Kim, S. J. Kim, K. S. Yun, and E. Yoon, “A modular expandable tactile sensor using flexible polymer,” MEMS ’05, pp. 642-645, 2005.
    [42] S. L. Chang, H. K. Lee, and E. Yoon, “Flip-chip assembly on soft polymer substrate using ACP for integrating readout circuitry for modular expandable tactile sensor array,” Transducers '05, Vol. 2, pp. 1969-1972, 2005.
    [43] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sens. Actuators A, Phys., Vol. 117, pp. 50-61, 2005.
    [44] S. H. Kim, J. Engel, C. Liu, and D. L. Jones, “Texture Classification. using a polymer based MEMS tacticle sensor,” J. Micromech. Microeng., Vol. 15, pp. 912-920, 2005.
    [45] R. Singh, Low Lee Ngo, Ho Soon Seng, and F.N.C. Mok, “A silicon piezoresistive pressure sensor,” Electronic Design, Test and Applications., pp. 181-184,2002.
    [46] 黃德昌, “以乾濕複合蝕刻法進行微壓力感測器微小化之研究,” 交通大學工學院精密與自動化工程學程碩士論文, 2005.
    [47] A. C. Ugural, “Stress in plates and shells,” 2nd ed., 1981.
    [48] L. W. Lin, and W. J. Yun, “MEMS pressure for aerospace applications,” Aerospace conference, pp. 429-436, 1998.
    [49] 朱嘉儀, “新型SOG微加速度計之設計與機電系統整合探討,” 清華大學動力機械工程研究所碩士論文, 2003.
    [50] L. Smith, and A. Soderbarg, “Electrochemical etch stop obtained by accumulation of free carries without P-N junction,” J. Electorchem. Soc., Vol. 140, pp. 271-275, 1993.
    [51] M. Maghribi, J. Hamilton, D. Polla, K. Rose, T. Wilson, and P. rulevitch, “Stretchable micro-electorde array,” Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference, pp. 80-83, 2002.
    [52] W.T. Li, R.B. Charters, B. Luther-Davies, and L. Mar, “Significant improvement of adhesion between gold thin films and a polymer,” Applied surface science, Vol. 233, pp. 227-233, 2004.
    [53] 林炯彣, “應用垂直式導線與陽極接合於SOI-MEMS晶片之晶圓級封裝,” 清華大學微機電系統工程研究所碩士論文, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE