研究生: |
徐英瑋 |
---|---|
論文名稱: |
以第一原理模擬計算第三添加元素Nb和V對SmCo6.7M0.3(M= Nb, V)之磁性質與顯微結構量測之研究 Ab initio calculations of third doping elements Nb/V on magnetic properties and microstructural measurements for SmCo6.7M0.3 (M= Nb, V) |
指導教授: | 歐陽浩 |
口試委員: |
邱顯浩
張晃暐 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 第一原理 、SmCo永磁 、磁晶異向性 、矯頑磁場 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Sm-Co系列永磁材料以極高的磁能積和居禮溫度,擁有良好的磁性質與溫度穩定性,在電機工業和微機電工業上受到矚目。在其磁性質中,磁晶異向性會影響矯頑磁場,進而決定磁能積的大小,在工業上是一重要的參數。實驗上須將樣品細化成粉末量測磁晶異向性場,某些介穩態樣品如SmCo7,會在細化過程中分解成其他穩定態。基於實驗量測上的困難,理論模擬計算是得到磁晶異向性一個很好的選擇。
本研究以第一原理密度泛函理論(DFT)計算、電子顯微鏡(TEM)、X 光繞射(XRD)分析探討第三添加元素對SmCo6.7M0.3(M=Nb,V)之微結構與磁性質之影響。根據準化學模式,可以由溶液焓與陰電性差計算第三添加元素的佔據位置,但是與實驗結果不完全吻合。總能鬆弛計算的結果顯示藉由參雜Nb與V元素能增加TbCu7相的穩定性,且Nb與V最可能佔據於2e位置,與Rietveld方法精算的結果一致。
SmCo6.7V0.3理論計算的飽和磁化量與實驗值相符;SmCo6.7Nb0.3理論計算的飽和磁化量與實驗值相差約為11.4%,造成誤差的因素為實際結構中的缺陷使得磁化量降低。由SmCo7轉變為SmCo6.7Nb0.3時,理論計算的磁晶異向性常數由1.195×107erg/cm3提高到1.400×107erg/cm3 (kpoints=6×12×8);由SmCo7轉變為SmCo6.7V0.3理論計算的磁晶異向性常數由1.195×107erg/cm3提高到1.437×107erg/cm3。添加第三元素Nb與V到SmCo7結構中,藉由降低晶粒尺寸與提升磁晶異向性兩個機制來提升矯頑磁場。
第一章
[1] S. Kozawa, Science & Technology Trends 40, 40-54 (2011).
[2] 清華大學材料工程學系碩士論文,SmCo5/SmCo7/SmCo6.7Zr0.3/ SmCo6.7V0.3之晶體結構、磁化量及磁晶異向性探討,陳尹瀅,民99
[3] B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972)
[4] E. P. Furlani, Permanent Magnet and Electromechanical Devices : Materials, Analysis, and Applications, Academic Press (2001).
[5] M. McCaig, and A. G. Clegg, Permanent Magnets in Theory and Practice, 2nd ed., New York: John Wiley and Sons. (1987).
[6] K. J. Strnat, Proc. IEEE, vol. 78, No 6 (1990) pp. 923-946
[7] M. A. Plonus,婁祥麟譯,「應用電磁學(下冊)」,乾泰圖書。(1985)
[8] K. H. J. Buschow, Ferromagnetic materials : a handbook on the properties of magnetically ordered substances, Vol 1, Chapter 4 (1980) p. 297.
[9] K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38 (1967) 1001.
[10] H. Senno, Y Tawara, IEEE Trans. Magn. vol. MAG-10 (1974).
[11] T. Ojima, S. Tomizawa, T. Yoneyama, and T. Hori, J. Appl. Phys. 4 (1977) 671.
[12] J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, J. Appl. Phys. Vol 55, No. 6 (1984) pp. 2078-2081
[13] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, J. Appl. Phys. Vol 55, No. 6 (1984) pp. 2083-2087
[14] M. Sagawa et al. , IEEE Trans. Magn. Volume 22, Issue 5 (1986) pp. 910-912.
[15] O. Cugat, J. Delamare, and G. Reyne, IEEE Trans. Magn. vol. 39, NO.5, (2003)
[16] R. P. Feynman, J. Microelectromech. Syst. 1 (1992) 60.
[17] D. Niarchos, Sensor and Actuators A: Physical. 106 (2003) 255.
[18] C.H. Lee et al., Phys. Rev. B 42 (1990) 11384.
[19] S. Jeong, Y. N. Hsu, D.E. Laughlin, and M. E. McHenry, IEEE Trans. Magn. 36 (2000) 2336.
[20] P.L. Cavallotti et al., Surf. Coat. Technol. 105 (1998) 232.
[21] E. Pina et al., J. Magn. Magn. Mater. 290 (2005) 1234.
[22] C. J. Yang, and S. W. Kim, Metals and Materials International, 4 (1998) 1063.
[23] D. Weller, and A. Moser, IEEE Trans. Magn. 35, (1999) 4423-4439.
[24] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn., 34, (1998) 1845
[25] C. A. Ross et al, J. Vac. Sci. Technol. B, Vol. 17, No. 6 (1999)
[26] R. Sbiaa and S. N. Piramanayagam, Recent Patents on Nanotechnology 2007,1,29-4
[27] F. Casoli, J. Appl. Phys. 103, 043912 (2008).
[28] D. H. Wei and Y. D. Yao, Appl. Phys. Lett., 95, 172503 (2009).
[29] J. Sayama, T. Asahi, K. Mizutani, and T. Osaka, J. Phys. D: Appl. Phys. 37 (2004)
[30] J. Sayama, K. Mizutani, T. Asahi, and T. Osaka, Appl. Phys. Lett. 85 (2004) 5640
[31] A. Sugiyama et al., The 9th Perpendicular Magnetic Recording Conference, Physics Procedia 16 (2011) 68–74
[32] E. C. Stoner, and E. P. Wohlfarth, Pilos. Trans. R.Soc. London, Ser. A 240 (1948) 599
[33] 物理雙月刊22卷6期 p570,張文成 (2000)
[34] D. Weller et al., IEEE Trans. Magn. 36, No. 1, (2000)
[35] J. Luo, J. K. Liang, Y. Q. Guo, Q. L. Liu, F. S. Liu, Y. Zhang, L. T. Yang and G. H. Rao, Intermetallics, 13 (7), 710-716 (2005).
[36] J. Deportes, D. Givord, J. Schweizer, and F. Tasset, IEEE Trans. Magn. 12 (1976) 1000.
[37] A. K. Niessen, F. R. de Boer, R. Boom, P. F. De Chatel, W. C. M. Mattens, and A. R. Miedema, Calphad, 7:51-70. (1983)
[38] A. L. Allred, and E. G. Rochow, J. Inorg. Nucl. Chem, 5, 264-268 (1958)
[39] Y. Yuan, J. Yi, G. Borzone, and A. Watson, Calphad, 35 (2011) 416–420
第二章
[1] Y. Q. Guo et al., JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, Vol 13 (2006) 67-78.
[2] R. Cerny, Y. Filinchuk, and S. Bruhne, Intermetallics, 17 (2009) 818.
[3] J. Sayama, T. Asahi, K. Mizutani, and T. Osaka, J. Phys. D: Appl. Phys. 37 (2004) L1–L4.
[4] H. Saito et al., Journal of Magnetism and Magnetic Materials 82 (1989) 322-326.
[5] Y. Guo et al., Appl. Phys. Lett. 86 (2005) 192513.
[6] H. G. and K. Strnat, IEEE Trans. Magn. 2 (3), 487 (1966).
[7] K. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38 (3), 1001 (1967).
[8] H. Senno and Y. Tawara, IEEE Trans. Magn. 10, 313 (1974).
[9] Y. Khan, Acta Cryst. B29 (11), 2502 (1973).
[10] S. Liu, H. F. Mildrum and K. Strnat, J. Appl. Phys. 53 (3), 2383 (1982).
[11] G. Xue et al., CHIN. PHYS. LETT. Vol. 27, No. 1 (2010) 017501.
[12] 周壽增,冶金工業出版社,稀土永磁材料及其應用, (1990).
[13] K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38 (1967) 1001.
[14] M. Q. Huang, W. E. Wallace, M. McHenry, Q. Chen, and B. M. Ma, J. Appl. Phys. 83 (1998) 6718.
[15] T. Ojima et al., J. Appl. Phys. 4 (1977) 671.
[16] I. A. Al-Omari, Y. Yeshurun, J. Zhou and D. J. Sellmyer, J. Appl.
Phys. 87, 6710 (2000).
[17] J. Zhou, I. A. Al-Omari, J. P. Liu, and D. J. Sellmyer, J. Appl. Phys. 87 (2000) 5299.
[18] Y. Q. Guo, W. Li, W. C. Feng, J. Luo, J. K. Liang, Q. J. He and X. J.
Yu, Appl. Phys. Lett. 86 (19), 192513 (2005).
[19] J. Luo, J. K. Liang, Y. Q. Guo, Q. L. Liu, F. S. Liu, Y. Zhang, L. T.
Yang and G. H. Rao, Intermetallics 13 (7), 710-716 (2005).
[20] A. R. Miedema, Philips. Technol. Rev. 36:217 (1976).
[21] A. R. Miedema , R. Boom , and F. R. de Boer, J. Less-Common Met 41:283. (1975).
[22] A. K. Niessen et al., Calphad, 7:51. (1983).
[23] H. W. Chang et al., J. Alloys Compd. 455 (1-2), 506-509 (2008).
[24] Y. Y. Li, J. Shen and Y. Chen, Solid State Sci. 12 (1), 33-38 (2010).
[25] 固態能帶理論,謝希德、陸棟編,復旦大學出版社(1998).
[26] M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. (Leipzig) 84 (20), 457 (1927).
[27] N. W. Ashcroft and N. D. Mermin, Solid state physics, Saunders College Publishing (1976).
[28] M. P. Marder, Condensed matter physics, John Wiley and Sons (2000).
[29] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
[30] W. Kohn, and L. J. Sham, Phys. Rev. 140 A1133-A1138 (1965).
[31] 江進福, 物理雙月刊, 廿三卷五期, P549-553 (2001).
[32] W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.
[33] E. Wigner, Transactions of the Faraday Society, 34 (1938) 0678.
[34] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.
[35] S. H. Vosko, J. P. Perdew, and A. H. Macdonald, Phy. Rev. Lett. 35 (1975) 1725.
[36] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[37] N. W. Ashcroft and N. D. Mermin, Solid State Physics, chap. 8, (Saunders College, Philadelphia, 1976), International edn.
[38] I. B. Russak, CALCULUS OF VARIATIONS MA 4311 LECTURE NOTES, (2002)
[39] D. R. Hamann, M. Schluter, and C. Chiang, Phy. Rev. Lett. 43 (1979) 1494.
[40] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992).
[41] The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jürgen Furthmüller.
[42] G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
[43] J. A. Pople et al., Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).
[44] X. Zhao, D. Ceresoli, and D. Vanderbilt, Phys. Rev. B 71 (2005) 085107.
[45] Y. K. Wang, G. Y. Guo and H. T. Jeng, Journal of Magnetism and Magnetic Materials, 282 (2004) 139–142.
[46] D. Vanderbilt, Phys. Rev. B, 41 (1990) 7892.
[47] C. G. Bmyden, Math. Comput 19 (155) 577.
[48] P. Pulay, Chem. Phys. Lett. 73 (1980) 393.
[49] D. D. Johnson, Phys. Rev. B38, 12 (1988) 87.
[50] In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271].
[51] B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972).
[52] V. A. Krutov and L. N. Savushkin, J. Phys. A: Math. Nucl. Gen. 6 (1973) 93.
[53] L. Pauling, Journal of the American Chemical Society, 54 (1932) 3570–3582.
[54] L. Pauling, Nature of the Chemical Bond, Cornell University Press. (1960) pp. 88–107.
[55] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements. Pergamon. p.30. (1984).
[56] J. C. Slater, Phys. Rev. 35, 509 (1930).
[57] A. L. Allred, Journal of Inorganic and Nuclear Chemistry 17 (3–4): 215–221.(1961).
[58] J. E. Huheey et al., Inorganic Chemistry :Principle of Structure and Reactivity, 4th ed., Harper Collins College, (1993)
[59] R. S. Mulliken, Journal of Chemical Physics 2 (11): 782–793.(1934).
[60] R. S. Mulliken, J. Chem. Phys. 3 (9): 573–585.(1935).
[61] R. G. Pearson, J. Am. Chem. Soc. 107 (24): 6801.(1985).
[62] A. L. Allred and E. G. Rochow, Journal of Inorganic and Nuclear Chemistry 5 (4): 264. (1958).
[63] H. O. Pritchard and H. A. Skinner, Chem. Rev. 55, 745 (1955).
[64] L. Pauling, J. Amer. Chem. Soc. 69, 542 (1947).
[65] J. C. Slater, Phys. Rev. 36, 57 (1930).
[66] R. T Sanderson, J. Am. Chem. Soc. 105 (1983). 2259-2261.
[67] R. T Sanderson, Inorg. Chem. 25, (1986). 3518-3522.
[68] M. I. Trofimov and E. A. Smolenskii, Russian Chemical Bulletin, 54 (2005). 2235.
[69] R. T Sanderson, J. Chem. Phys. 24, 166 (1956).
[70] R. T Sanderson, J. Chem. Phys. 23, 2467 (1955).
[71] R. T Sanderson, Inorg. Nucl. Chem. 28 (1966) 1553-1565.
[72] R. T Sanderson, Inorg. Nucl. Chem. 30 (1968) 375-393.
[73] R. T Sanderson, Science (Washington, D.C.), 114 (1951) 670-672.
[74] P. Politzer and H. Weinstein, J. Chem. Phys. 71 (1979) 4218-4220.
[75] J. K. Nagle, J. Am. Chem. Soc. 112 (1989) 4741-4747.
[76] P. W. Atkins, Physical Chemistry, 3rd ed.; W. H. Freeman and Company: New York, (1986) pp 579-583.
[77] A. I. Gorbunov and D. S. Kaganyuk, Russ. J. Phys. Chem. 60 (1986) 1406-1407.
[78] L. Komorowski, Chem. Phys. 114 (1987) 55-71.
[79] L. C. Allen, J. Amer. Chem. Soc. 111 (25): 9003.(1989).
[80] D. R. Gaskell, Introduction to the Thermodynamics of Materials, 4th Edition, Taylor & Francis, (2003) p.245-252
[81] 冶金熱力學,李文興譯,美商麥格羅.希爾國際股份有限公司 台灣分公司出版,民83年。
[82] E. A. Guggenheim, Proc. Roy. Soc. A, 135 (1932) 181-192.
[83] E. A. Guggenheim, Proc. Roy. Soc. A, 148 (1935) 304-312.
[84] E. A. Guggenheim, Proc. Roy. Soc. A, 206 (1951) 335-353.
[85] P. R. Frey, College chemistry, 3rd Edition, Prentice-Hall. (1965) p.134.
[86] J. Guo et al., Journal of Alloys and Compounds 425 (2006) 14–23.
[87] Y. Y. Chen, C. C. Hsieh, S. C. Lo, W. C. Chang, H. W. Chang, S. H. Chiou and H. Ouyang, J. Appl. Phys. 109 (7), 07A748 (2011).
[88] Y. Guo et al., Appl. Phys. Lett. 86, 192513 (2005).
[89] A. R. Miedema , F. R. de Boer , and R. Boom, Calphad, Vol.1, No. 4 (1977) pp.341-359.
[90] A. R. Miedema and A. K. Niessen, Calphad, Vol.7, No.1 (1983) pp27-36.
[91] H. W. Chang et al., J. Appl. Phys. 101, 09K508 (2007).
[92] C. C. Hsieh et al., J. Appl. Phys. 105, 07A705 (2009).
[93] Z. H. Guo et al., J. Appl. Phys. 105, 07A731 (2009).
[94] C. C. Hsieh et al., J. Appl. Phys. 107, 09A738 (2010).
[95] C. C. Hsieh, C. W. Shih, Z. Liu, W. C. Chang, H. W. Chang, A. C. Sun, and C. C. Shaw, J. Appl. Phys. 111, 07E306 (2012).
[96] C. C. Hsieh, H. W. Chang, A. C. Sun, W. C. Chang, and P. Guo, IEEE Trans. Magn. 47, 10 (2011) 3332-3335.
[97] C. C. Hsieh, H. W. Chang, X. G. Zhao, A. C. Sun, and W. C. Chang, J. Appl. Phys. 109, 07A730 (2011).
[98] P. Scherrer, Göttinger Nachrichten Gesell., 2 (1918) 98.
[99] R. Ramesh and K. Srikrishna, J. Appl. Phys. 64 (1988) 6406
[100] G. Y. Guo and H. Ebert, Phys. Rev. B, Vol. 53, No. 5 (1996).
[101] P. M. Marcus and V. L. Moruzzi, Solid State Communications, Vol. 55, No.11, (1985) pp.971-975.
[102] K. Schröder et al., J. Appl. Phys. 57, 3669 (1985).
[103] J. Luo et al., Appl. Phys. Lett. 85 (2004) 5299.
第四章
[1] P. Scherrer, Göttinger Nachrichten Gesell., 2 (1918) 98.
[2] H. M. Rietveld, J. Appl. Cryst. 2 (1969) 65.
[3] A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
[4] 清華大學材料工程學系碩士論文,SmCo5/SmCo7/SmCo6.7Zr0.3/ SmCo6.7V0.3之晶體結構、磁化量及磁晶異向性探討,陳尹瀅,民99。
[5] Z. H. Guo et al., J. Appl. Phys. 105, 07A731 (2009).
[6] C. C. Hsieh et al., J. Appl. Phys. 105, 07A705 (2009).
[7] K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38 (1967) 1001.
[8] M. Q. Huang, W. E. Wallace, M. McHenry, Q. Chen, and B. M. Ma, J. Appl. Phys. 83 (1998) 6718.
[9] H. Fukaya et al., Defect and Diffusion Forum, 297-301, (2010) 384.
[10] B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972).
[11] S. G. Sankar, V. U. S. Rao, E. Segal, and W. E. Wallace, Phys. Rev. B 11 (1975) 435.
[12] S. R. Trout and C. D. Graham, Jr, J. Appl. Phys. 50 (1979) 2361.
[13] Y. K. Wang, G. Y. Guo, and H. T. Jeng, J. Magn. Magn. Mater. 282 (2004) 139.
[14] J. Deportes, D. Givord, J. Schweizer, and F. Tasset, IEEE Trans. Magn. 12 (1976) 1000.
[15] R. Ramesh and K. Srikrishna, J. Appl. Phys. 64 (1988) 6406