簡易檢索 / 詳目顯示

研究生: 林政賢
Lin, Cheng-Hsien
論文名稱: 層狀質子化鈦酸鹽的製備與應用
The fabrications and applications of Layered Protonated Titanate
指導教授: 汪上曉
Wong, David Shan-Hill
呂世源
Lu, Shih-Yuan
口試委員: 段興宇
Tuan, Hsing-Yu
徐雍鎣
Hsu, Yung-Jung
張仍奎
Chang, Jeng-Kuei
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 層狀質子化鈦酸鹽吸附鰭-線核殼結構鋰離子電池
外文關鍵詞: layered protonated titanate nanosheets, adsorption, fin-wire core-shell structure, Lithium‐ion battery
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討了層狀質子化鈦酸鹽奈米片的製備及,在汙染物的吸附與鋰離子電池的應用。

    在汙染物的吸附應用部分,我們開發了一簡易的一步驟(one-step)、低溫(<100oC)、藉由尿素調節的合成方法用以製備層狀質子化鈦酸鹽 H2Ti2O5.H2O。尿素在此間接當作銨離子的來源,經由調控不同的尿素濃度與反應熟成時間,可以製備出結構完整的層狀質子化鈦酸鹽H2Ti2O5.H2O奈米片。經由吸附實驗的測試,此一材料在有機汙染物亞甲基藍與無機汙染物鉛離子的吸附上展現極佳的吸附容量。此極佳的吸附容量可以歸因於層狀結構奈米片具有高的比表面積與良好的離子交換能力。其中鉛離子嵌入於LPTNs H2Ti2O5.H2O的內層空間可以藉由檢測吸附後的X-射線繞射峰值的下降獲得驗證。由實驗結果顯示層狀質子化鈦酸鹽奈米片材料可做為廢水處理中用於吸附去除金屬離子或陽離子有機染料之有前途的吸附劑。

    我們也將TiO2B奈米片嫁接在層狀質子化鈦酸鹽H2Ti8O17 奈米線上,並將此帶鰭奈米線的核-殼結構當作鋰離子電池的負極。發現其半電池放電電容量比未經修飾的H2Ti8O17 core奈米線增加了20 %,並於長循環放電下無明顯的衰退情況發生。

    上述結果證明了鈦酸鹽層作為環境和能源應用的納米結構材料的多功能性。


    In this thesis, fabrications of nanostructures containing layered protonated titanate nanosheets (LPTNs) and their applications were investigated.

    A simple one-step, low-temperature, urea-modulated method is developed for the synthesis of layered protonated titanate nanosheets (LPTNs). Urea serves as an indirect ammonium ion source, and the controlled supply of the ammonium ion slows the crystalline formation process and enables the production of the LPTNs from amorphous intermediate through aging-induced restructuring. The resulting LPTNs exhibit excellent adsorption capacities for methylene blue and Pb2+ because of their high specific surface areas and excellent ion-exchange capability. Intercalation of Pb2+ into the interlayer space of the LPTNs are evidenced by the relevant X-ray diffraction patterns on perturbation of the layered structure. The LPTNs prove to be a promising adsorbent in wastewater treatment for adsorption removal of metal ions or cationic organic dyes.

    We have also decorated TiO2B fins onto layer titnanate H2Ti8O17 nanowires and assemble them into a Li-ion battery half-cell. The results show TiO2B fin-H2Ti8O17 wire core-shell structure exhibits 20% higher capacity as the material for Li-ion battery half-cell compared to pristine H2Ti8O17 wires. Excellent long cycling life in half-cell discharge test was also obtained.

    The aforementioned results demonstrated the versatility of layer titanate as a nanostructured material for environmental and energy applications.

    誌謝---------I 中文摘要---------II 英文摘要---------III 目錄---------V 圖目錄---------VIII 表目錄---------XI 第一章、緒論---------1 1.1 層狀金屬氧化物(Layered Metal Oxides)簡介---------1 1.2 層狀質子化鈦酸鹽(Layered Protonated Titanate)簡介---------5 1.3 各章節編排---------7 第二章、層狀質子化鈦酸鹽奈米片LPTNs H2Ti2O5.H2O之合成及鑑定---------8 2.1 層狀質子化鈦酸鹽奈米片(LPTNs)文獻回顧---------8 2.2 研究動機與目的---------11 2.3 層狀質子化鈦酸鹽奈米片LPTNs H2Ti2O5.H2O之合成---------12 2.3.1 實驗藥品---------12 2.3.2 實驗裝置---------13 2.3.3 實驗分析儀器---------15 2.3.4 LPTNs H2Ti2O5.H2O合成步驟---------16 2.4 LPTNs H2Ti2O5.H2O之鑑定---------17 2.4.1 XRD---------17 2.4.2 LPTNs H2Ti2O5.H2O成長機制---------19 2.4.3 LPTNs之SEM---------21 2.4.4 LPTNs H2Ti2O5.H2O之TEM---------24 2.4.5 BET與BJH量測---------25 第三章、層狀質子化鈦酸鹽LPTNs H2Ti2O5.H2O應用於有機與無機汙染物吸附實驗---------27 3.1 吸附實驗---------27 3.2 LPTNs H2Ti2O5.H2O之MB與Pb2+吸附實驗結果---------29 3.2.1 飽和吸附曲線---------29 3.2.2 MB與Pb2+等溫吸附曲線---------32 3.2.3 MB吸附的爭論---------35 3.3 LPTNs H2Ti2O5.H2O吸附實驗結論---------37 第四章、層狀質子化鈦酸鹽(LPTN)核殼結構應用於鋰離子電池之合成與鑑定---------38 4.1 鋰離子電池簡介---------38 4.2 TiO2負極工程改質文獻回顧--------- 43 4.2.1 TiO2內部工程改質 (Intrinsic engineering of TiO2 materials)---------43 4.2.1.1 Size tailoring---------44 4.2.1.2 Structure control---------45 4.2.1.3 Facet control---------46 4.2.1.4 Electronic structure manipulation---------46 4.2.2 TiO2外部工程改質 (extrinsic engineering of TiO2 materials)---------48 4.2.2.1 Carbon coating---------49 4.2.2.2 Conductive network design---------50 4.2.2.3 Conductive agent hybrid---------51 4.3 研究動機與目的---------52 4.4 質子化鈦酸鹽奈米線H2Ti8O17與H2Ti8O17-TiO2B核殼結構之合成與鑑定---------53 4.4.1 實驗藥品---------53 4.4.2 實驗裝置---------54 4.4.3 質子化鈦酸鹽奈米線H2Ti8O17合成步驟---------56 4.4.4 質子化鈦酸鹽奈米線H2Ti8O17之鑑定---------57 4.4.4.1 SEM---------57 4.4.3.2 XRD 59 4.4.6 H2Ti8O17 -TiO2B core – shell合成步驟---------61 4.4.6.1 TiO2B材料製備---------61 4.4.6.2 H2Ti8O17 - TiO2B core-shell結構合成與鑑定---------63 第五章、H2Ti8O17 - TiO2B core-shell 應用於鋰離子電池實驗---------65 5.1 電池組裝---------65 5.2 電池量測---------66 5.2.1 H2Ti8O17 core與 H2Ti8O17 – TiO2B core-shell結構充放電曲線---------67 5.2.2 H2Ti8O17 core與 H2Ti8O17 – TiO2B core-shell結構於不同C數下充放電測試---------68 5.2.3 H2Ti8O17 core與 H2Ti8O17 – TiO2B core-shell長效測試---------69 5.2.4 H2Ti8O17 core與 H2Ti8O17 – TiO2B core-shell CV測試---------70 5.3 H2Ti8O17 core與 H2Ti8O17 – TiO2B core-shell 實驗結論---------71 第六章、總結---------72 第七章、參考文獻---------73 附錄---------88

    1. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423, (6941), 705-714.

    2. Krebs, B., The crystal structure of MoO 3, 2H 2 O: a metal aquoxide with both co-ordinated and hydrate water. Journal of the Chemical Society D: Chemical Communications 1970, (1), 50-51.

    3. Bachmann, H.-G.; Ahmed, F. R.; Barnes, W. H., The crystal structure of vanadium pentoxide. Zeitschrift für Kristallographie-Crystalline Materials 1961, 115, (1-6), 110-131.

    4. Delmas, C.; Fouassier, C.; Hagenmuller, P., Structural Classification and Properties of the Layered Oxides. Physica B & C 1980, 99, (1-4), 81-85.

    5. Gasperin, M., Structure du triniobate (V) de potassium KNb3O8, un niobate lamellaire. Acta Crystallographica Section B 1982, 38, (7), 2024-2026.

    6. Gasperin, M.; Le Bihan, M. T., Mecanisme d'hydratation des niobates alcalins lamellaires de formule A4Nb4O17 (A= K, Rb, Cs). Journal of solid state chemistry 1982, 43, (3), 346-353.

    7. Andersson, S.; Wadsley, A., The crystal structure of Na2Ti3O7. Acta Crystallographica 1961, 14, (12), 1245-1249.

    8. Dion, M.; Piffard, Y.; Tournoux, M., The tetratitanates M2Ti4O9 (M= Li, Na, K, Rb, Cs, Tl, Ag). Journal of Inorganic and Nuclear Chemistry 1978, 40, (5), 917-918.

    9. Wadsley, A.; Mumme, W., The crystal structure of Na2Ti7O15, and an ordered intergrowth of Na2Ti6O13 andNa2Ti8O17. Acta Crystallographica Section B 1968, 24, (3), 392-396.

    10. Watanabe, M.; Bando, Y.; Tsutsumi, M., A new member of sodium titanates, Na2Ti9O19. Journal of Solid State Chemistry 1979, 28, (3), 397-399.

    11. Marchand, R.; Brohan, L.; Tournoux, M., TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Materials Research Bulletin 1980, 15, (8), 1129-1133.

    12. Olazcuaga, R.; Reau, J.-M.; Devalette, M.; Le Flem, G.; Hagenmuller, P., Les phases Na4XO4 (X= Si, Ti, Cr, Mn, Co, Ge, Sn, Pb) et K4XO4 (X= Ti, Cr, Mn, Ge, Zr, Sn, Hf, Pb). Journal of Solid State Chemistry 1975, 13, (4), 275-282.

    13. Werthmann, R.; Hoppe, R., Über Oxotitanate der Alkalimetalle. Zur Kenntnis von Na4Ti5O12. Zeitschrift für anorganische und allgemeine Chemie 1984, 519, (12), 117-133.

    14. Wadsley, A., Crystal chemistry of non‐stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8. Acta Crystallographica 1957, 10, (4), 261-267.

    15. Okada, K.; Marumo, F.; Iwai, S., The crystal structure of Cs6W11O36. Acta Crystallographica Section B 1978, 34, (1), 50-54.

    16. Delmas, C.; Fouassier, C., Les phases KxMnO2 (x≤ 1). Zeitschrift für anorganische und allgemeine Chemie 1976, 420, (2), 184-192.

    17. Uppuluri, R.; Sen Gupta, A.; Rosas, A. S.; Mallouk, T. E., Soft chemistry of ion-exchangeable layered metal oxides. Chemical Society Reviews 2018, 47, (7), 2401-2430.

    18. Feitknecht, W.; Gerber, M., Zur Kenntnis der Doppelhydroxyde und basischen Doppelsalze III. Über Magnesium‐Aluminiumdoppelhydroxyd. Helvetica Chimica Acta 1942, 25, (1), 131-137.

    19. Klevtsova, R.; Klevtsov, P., X-ray diffraction study of a new modification of yttrium hydroxychloride Y(OH)2Cl. Journal of Structural Chemistry 1967, 7, (4), 524-527.

    20. Geng, F.; Matsushita, Y.; Ma, R.; Xin, H.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T., General Synthesis and Structural Evolution of a Layered Family of Ln8(OH)20Cl4·nH2O (Ln= Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y). Journal of the American Chemical Society 2008, 130, (48), 16344-16350.

    21. Hansen, W. C.; Brownmiller, L.; Bogue, R., STUDIES ON THE SYSTEM CALCIUM OXIDE-ALUMINA-FERRIC OXIDE1. Journal of the American Chemical Society 1928, 50, (2), 396-406.

    22. Choy, J.-H.; Kim, J.-Y.; Kim, S.-J.; Sohn, J.-S.; Han, O. H., New Dion− Jacobson-Type Layered Perovskite Oxyfluorides, ASrNb2O6F (A= Li, Na, and Rb). Chemistry of materials 2001, 13, (3), 906-912.

    23. Ida, S.; Okamoto, Y.; Matsuka, M.; Hagiwara, H.; Ishihara, T., Preparation of Tantalum-Based Oxynitride Nanosheets by Exfoliation of a Layered Oxynitride, CsCa2Ta3O10-xNy, and Their Photocatalytic Activity. Journal of the American Chemical Society 2012, 134, (38), 15773-15782.

    24. Denis Romero, F.; Leach, A.; Möller, J. S.; Foronda, F.; Blundell, S. J.; Hayward, M. A., Strontium Vanadium Oxide–Hydrides:“Square‐Planar” Two‐Electron Phases. Angewandte Chemie International Edition 2014, 53, (29), 7556-7559.

    25. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of titanium oxide nanotube. Langmuir 1998, 14, (12), 3160-3163.

    26. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C., Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Advanced Materials 2006, 18, (21), 2807-2824.

    27. Bavykin, D. V.; Walsh, F. C., Elongated Titanate Nanostructures and Their Applications. European Journal of Inorganic Chemistry 2009, (8), 977-997.

    28. Bavykin, D. V.; Passoni, L.; Walsh, F. C., Hierarchical tube-in-tube structures prepared by electrophoretic deposition of nanostructured titanates into a TiO2 nanotube array. Chemical Communications 2013, 49, (62), 7007-7009.

    29. Du, G. H.; Chen, Q.; Che, R. C.; Yuan, Z. Y.; Peng, L. M., Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters 2001, 79, (22), 3702-3704.

    30. Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Transactions 2003, (20), 3898-3901.

    31. Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H., Synthesis of nanotube from a layered H2Ti4O9 center dot H2O in a hydrothermal treatment using various titania sources. Journal of Materials Science 2004, 39, (13), 4239-4245.

    32. Bavykin, D. V.; Cressey, B. A.; Light, M. E.; Walsh, F. C., An aqueous, alkaline route to titanate nanotubes under atmospheric pressure conditions. Nanotechnology 2008, 19, (27).

    33. Bavykin, D. V.; Kulak, A. N.; Walsh, F. C., Metastable Nature of Titanate Nanotubes in an Alkaline Environment. Crystal Growth & Design 2010, 10, (10), 4421-4427.

    34. Sasaki, T.; Komatsu, Y.; Fujiki, Y., A new layered hydrous titanium dioxide HxTi2–x/4O4· H2O. Journal of the Chemical Society, Chemical Communications 1991, (12), 817-818.

    35. Sasaki, T.; Watanabe, M.; Michiue, Y.; Komatsu, Y.; Izumi, F.; Takenouchi, S., Preparation and Acid-Base Properties of a Protonated Titanate with the Lepidocrocite-Like Layer Structure. Chemistry of Materials 1995, 7, (5), 1001-1007.

    36. Yang, J.; Li, D.; Wang, X.; Yang, X. J.; Lu, L., Study on the synthesis and ion-exchange properties of layered titanate Na2Ti3O7 powders with different sizes. Journal of Materials Science 2003, 38, (13), 2907-2911.

    37. Tsai, C. C.; Teng, H., Nanotube formation from a sodium titanate powder via low-temperature acid treatment. Langmuir 2008, 24, (7), 3434-3438.

    38. Shen, L. M.; Bao, N. Z.; Zheng, Y. Q.; Gupta, A.; An, T. C.; Yanagisawa, K., Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. Journal of Physical Chemistry C 2008, 112, (24), 8809-8818.

    39. Zhang, S.; Peng, L. M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z., Formation mechanism of H2Ti3O7 nanotubes. Physical Review Letters 2003, 91, (25).

    40. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 2004, 14, (22), 3370-3377.

    41. Wei, M. D.; Konishi, Y.; Arakawa, H., Synthesis and characterization of nanosheet-shaped titanium dioxide. Journal of Materials Science 2007, 42, (2), 529-533.

    42. Peng, C. W.; Ke, T. Y.; Brohan, L.; Richard-Plouet, M.; Huang, J. C.; Puzenat, E.; Chiu, H. T.; Lee, C. Y., (101)-exposed anatase TiO2 nanosheets. Chemistry of Materials 2008, 20, (7), 2426-2428.

    43. Wang, C. H.; Zhang, X. T.; Zhang, Y. L.; Jia, Y.; Yang, J. K.; Sun, P. P.; Liu, Y. C., Hydrothermal Growth of Layered Titanate Nanosheet Arrays on Titanium Foil and Their Topotactic Transformation to Heterostructured TiO2 Photocatalysts. Journal of Physical Chemistry C 2011, 115, (45), 22276-22285.

    44. Korosi, L.; Papp, S.; Csapo, E.; Meynen, V.; Cool, P.; Dekany, I., A short solid-state synthesis leading to titanate compounds with porous structure and nanosheet morphology. Microporous and Mesoporous Materials 2012, 147, (1), 53-58.

    45. Li, N.; Zhang, L. D.; Chen, Y. Z.; Fang, M.; Zhang, J. X.; Wang, H. M., Highly Efficient, Irreversible and Selective Ion Exchange Property of Layered Titanate Nanostructures. Advanced Functional Materials 2012, 22, (4), 835-841.

    46. Takezawa, Y.; Imai, H., Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area. Small 2006, 2, (3), 390-393.

    47. Takezawa, Y.; Imai, H., Structural control on crystal growth of titanate in aqueous system: Selective production of nanostructures of layered titanate and anatase-type titania. Journal of Crystal Growth 2007, 308, (1), 117-121.

    48. Jitputti, J.; Rattanavoravipa, T.; Chuangchote, S.; Pavasupree, S.; Suzuki, Y.; Yoshikawa, S., Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catalysis Communications 2009, 10, (4), 378-382.

    49. Chen, D. H.; Huang, F. Z.; Cao, L.; Cheng, Y. B.; Caruso, R. A., Spiky Mesoporous Anatase Titania Beads: A Metastable Ammonium Titanate-Mediated Synthesis. Chemistry-a European Journal 2012, 18, (43), 13762-13769.

    50. Zhao, B.; Chen, F.; Gu, X. N.; Zhang, J. L., Organic-Stabilizer-Free Synthesis of Layered Protonic Titanate Nanosheets. Chemistry-an Asian Journal 2010, 5, (7), 1546-1549.

    51. Gao, Y. P.; Fang, P. F.; Liu, Z.; Chen, F. T.; Liu, Y.; Wang, D. H.; Dai, Y. Q., A Facile One-Pot Synthesis of Layered Protonated Titanate Nanosheets Loaded with Silver Nanoparticles with Enhanced Visible-Light Photocatalytic Performance. Chemistry-an Asian Journal 2013, 8, (1), 204-211.

    52. Xie, S. F.; Zheng, B. J.; Kuang, Q.; Wang, X.; Xie, Z. X.; Zheng, L. S., Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. Crystengcomm 2012, 14, (22), 7715-7720.

    53. Wu, H. B.; Lou, X. W.; Hng, H. H., Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO2 for Lithium-Ion Batteries. Chemistry-a European Journal 2012, 18, (7), 2094-2099.

    54. Nguyen-Phan, T. D.; Oh, E. S.; Chhowalla, M.; Asefa, T.; Shin, E. W., Hierarchical macrochanneled layered titanates with "house-of-cards"-type titanate nanosheets and their superior photocatalytic activity. Journal of Materials Chemistry A 2013, 1, (26), 7690-7701.

    55. Sutradhar, N.; Sinhamahapatra, A.; Pahari, S. K.; Bajaj, H. C.; Panda, A. B., Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution. Chemical Communications 2011, 47, (27), 7731-7733.

    56. Sutradhar, N.; Pahari, S. K.; Jayachandran, M.; Stephan, A. M.; Nair, J. R.; Subramanian, B.; Bajaj, H. C.; Mody, H. M.; Panda, A. B., Organic free low temperature direct synthesis of hierarchical protonated layered titanates/anatase TiO2 hollow spheres and their task-specific applications. Journal of Materials Chemistry A 2013, 1, (32), 9122-9131.

    57. Zhao, B.; Chen, F.; Jiao, Y. C.; Zhang, J. L., Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. Journal of Materials Chemistry 2010, 20, (37), 7990-7997.

    58. Kao, L. H.; Hsu, T. C.; Lu, H. Y., Sol-gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment. Journal of Colloid and Interface Science 2007, 316, (1), 160-167.

    59. Livage, J.; Henry, M.; Sanchez, C., Sol-Gel Chemistry of Transition-Metal Oxides. Progress in Solid State Chemistry 1988, 18, (4), 259-341.

    60. Sing, K. S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry 1985, 57, (4), 603-619.

    61. Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B., Surface area and pore texture of catalysts. Catalysis Today 1998, 41, (1-3), 207-219.

    62. Tang, Y. X.; Lai, Y. K.; Gong, D. G.; Goh, K. H.; Lim, T. T.; Dong, Z. L.; Chen, Z., Ultrafast Synthesis of Layered Titanate Microspherulite Particles by Electrochemical Spark Discharge Spallation. Chemistry-a European Journal 2010, 16, (26), 7704-7708.

    63. Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A., Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials 2009, 170, (2-3), 969-977.

    64. Xiong, L.; Chen, C.; Chen, Q.; Ni, J. R., Adsorption of Pb(II) and Cd(II) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. Journal of Hazardous Materials 2011, 189, (3), 741-748.

    65. Ho, Y. S.; McKay, G., Sorption of dye from aqueous solution by peat. Chemical Engineering Journal 1998, 70, (2), 115-124.

    66. Langmuir, I., The constitution and fundamental properties of solids and liquids Part I Solids. Journal of the American Chemical Society 1916, 38, 2221-2295.

    67. Foo, K. Y.; Hameed, B. H., Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 2010, 156, (1), 2-10.

    68. Xiong, L.; Yang, Y.; Mai, J. X.; Sun, W. L.; Zhang, C. Y.; Wei, D. P.; Chen, Q.; Ni, J. R., Adsorption behavior of methylene blue onto titanate nanotubes. Chemical Engineering Journal 2010, 156, (2), 313-320.

    69. Tang, Y. X.; Gong, D. G.; Lai, Y. K.; Shen, Y. Q.; Zhang, Y. Y.; Huang, Y. Z.; Tao, J.; Lin, C. J.; Dong, Z. L.; Chen, Z., Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment. Journal of Materials Chemistry 2010, 20, (45), 10169-10178.

    70. Bavykin, D. V.; Redmond, K. E.; Nias, B. P.; Kulak, A. N.; Walsh, F. C., The Effect of Ionic Charge on the Adsorption of Organic Dyes onto Titanate Nanotubes. Australian Journal of Chemistry 2010, 63, (2), 270-275.

    71. Huang, J. Q.; Cao, Y. G.; Liu, Z. G.; Deng, Z. H.; Wang, W. C., Application of titanate nanoflowers for dye removal: A comparative study with titanate nanotubes and nanowires. Chemical Engineering Journal 2012, 191, 38-44.

    72. Feng, M.; You, W.; Wu, Z. S.; Chen, Q. D.; Zhan, H. B., Mildly Alkaline Preparation and Methylene Blue Adsorption Capacity of Hierarchical Flower-like Sodium Titanate. Acs Applied Materials & Interfaces 2013, 5, (23), 12654-12662.

    73. Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P., Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Advanced Materials 2008, 20, (14), 2777-+.

    74. Liu, Y.; Yang, Y., Recent progress of TiO2-based anodes for Li ion batteries. Journal of Nanomaterials 2016, 2016, 2.
    75. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 2014, 257, 421-443.

    76. Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Müllen, K., Nanographene‐constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Advanced Materials 2010, 22, (7), 838-842.

    77. Xia, L.; Xia, Y.; Liu, Z., Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. Electrochimica Acta 2015, 151, 429-436.

    78. Muto, S.; Tatsumi, K.; Kojima, Y.; Oka, H.; Kondo, H.; Horibuchi, K.; Ukyo, Y., Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods. Journal of Power Sources 2012, 205, 449-455.

    79. Ji, H.; Yang, G.; Miao, X.; Hong, A., Efficient microwave hydrothermal synthesis of nanocrystalline orthorhombic LiMnO2 cathodes for lithium batteries. Electrochimica Acta 2010, 55, (9), 3392-3397.

    80. Yin, X.; Huang, K.; Liu, S.; Wang, H.; Wang, H., Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. Journal of Power Sources 2010, 195, (13), 4308-4312.

    81. Doi, T.; Yatomi, S.; Kida, T.; Okada, S.; Yamaki, J.-i., Liquid-phase synthesis of uniformly nanosized LiMnPO4 particles and their electrochemical properties for lithium-ion batteries. Crystal Growth & Design 2009, 9, (12), 4990-4992.

    82. Bai, L.; Fang, F.; Zhao, Y.; Liu, Y.; Li, J.; Huang, G.; Sun, H., A sandwich structure of mesoporous anatase TiO2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes. Rsc Advances 2014, 4, (81), 43039-43046.

    83. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18, (5), 252-264.

    84. Zheng, X.; Li, J., A review of research on hematite as anode material for lithium-ion batteries. Ionics 2014, 20, (12), 1651-1663.

    85. Babu, V. J.; Vempati, S.; Uyar, T.; Ramakrishna, S., Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics 2015, 17, (5), 2960-2986.

    86. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry 2011, 21, (27), 9938-9954.

    87. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W., Lithium−air battery: promise and challenges. The Journal of Physical Chemistry Letters 2010, 1, (14), 2193-2203.

    88. Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. Journal of Power Sources 2010, 195, (9), 2419-2430.

    89. Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; Hinuma, Y.; Meng, Y. S.; Van Der Ven, A.; Srinivasan, V.; Kostecki, R.; Ceder, G., Lithium diffusion in graphitic carbon. The journal of physical chemistry letters 2010, 1, (8), 1176-1180.

    90. Kaskhedikar, N. A.; Maier, J., Lithium storage in carbon nanostructures. Advanced Materials 2009, 21, (25‐26), 2664-2680.

    91. Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y., Effect of carbon coating on electrochemical performance of treated natural graphite as lithium‐ion battery anode material. Journal of The Electrochemical Society 2000, 147, (4), 1245-1250.

    92. Yoshio, M.; Wang, H.; Fukuda, K., Spherical Carbon‐Coated Natural Graphite as a Lithium‐Ion Battery‐Anode Material. Angewandte Chemie 2003, 115, (35), 4335-4338.

    93. Park, K.-S.; Benayad, A.; Kang, D.-J.; Doo, S.-G., Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. Journal of the American Chemical Society 2008, 130, (45), 14930-14931.

    94. Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z., Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. Journal of Materials Chemistry 2004, 14, (11), 1754-1758.

    95. Ren, H.; Yu, R.; Wang, J.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H.; Wang, D., Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano letters 2014, 14, (11), 6679-6684.

    96. Liao, J. Y.; Manthiram, A., Mesoporous TiO2‐Sn/C Core‐Shell Nanowire Arrays as High‐Performance 3D Anodes for Li‐Ion Batteries. Advanced Energy Materials 2014, 4, (14), 1400403.

    97. Ferg, E.; Gummow, R.; De Kock, A.; Thackeray, M., Spinel anodes for lithium‐ion batteries. Journal of the Electrochemical Society 1994, 141, (11), L147-L150.

    98. Deschanvres, A.; Raveau, B.; Sekkal, Z., Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4 0⩽ x⩽ 0, 333. Materials Research Bulletin 1971, 6, (8), 699-704.

    99. Ronci, F.; Reale, P.; Scrosati, B.; Panero, S.; Rossi Albertini, V.; Perfetti, P.; Di Michiel, M.; Merino, J., High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 “zero-strain” insertion material. The journal of physical chemistry B 2002, 106, (12), 3082-3086.

    100. Yang, Z.; Du, G.; Meng, Q.; Guo, Z.; Yu, X.; Chen, Z.; Guo, T.; Zeng, R., Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry 2012, 22, (12), 5848-5854.

    101. Abayev, I.; Zaban, A.; Fabregat‐Santiago, F.; Bisquert, J., Electronic conductivity in nanostructured TiO2 films permeated with electrolyte. physica status solidi (a) 2003, 196, (1), R4-R6.

    102. Sushko, M. L.; Rosso, K. M.; Liu, J., Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles. The Journal of Physical Chemistry C 2010, 114, (47), 20277-20283.

    103. Fehse, M.; Ventosa, E., Is TiO2(B) the Future of Titanium‐Based Battery Materials? ChemPlusChem 2015, 80, (5), 785-795.

    104. Wagemaker, M.; van de Krol, R.; Kentgens, A. P.; Van Well, A. A.; Mulder, F. M., Two phase morphology limits lithium diffusion in TiO2 (anatase): A 7Li MAS NMR study. Journal of the American Chemical Society 2001, 123, (46), 11454-11461.

    105. Yan, X.; Li, Y.; Li, M.; Jin, Y.; Du, F.; Chen, G.; Wei, Y., Ultrafast lithium storage in TiO 2–bronze nanowires/N-doped graphene nanocomposites. Journal of Materials Chemistry A 2015, 3, (8), 4180-4187.

    106. Zhang, Y. Y.; Tang, Y. X.; Li, W. L.; Chen, X. D., Nanostructured TiO2-Based Anode Materials for High-Performance Rechargeable Lithium-Ion Batteries. Chemnanomat 2016, 2, (8), 764-775.

    107. Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G., Nanomaterials for energy conversion and storage. Chemical Society Reviews 2013, 42, (7), 3127-3171.

    108. Malgras, V.; Ji, Q.; Kamachi, Y.; Mori, T.; Shieh, F.-K.; Wu, K. C.-W.; Ariga, K.; Yamauchi, Y., Templated synthesis for nanoarchitectured porous materials. Bulletin of the Chemical Society of Japan 2015, 88, (9), 1171-1200.

    109. Tang, Y.; Wee, P.; Lai, Y.; Wang, X.; Gong, D.; Kanhere, P. D.; Lim, T.-T.; Dong, Z.; Chen, Z., Hierarchical TiO2 nanoflakes and nanoparticles hybrid structure for improved photocatalytic activity. The Journal of Physical Chemistry C 2012, 116, (4), 2772-2780.

    110. Rui, X.; Tang, Y.; Malyi, O. I.; Gusak, A.; Zhang, Y.; Niu, Z.; Tan, H. T.; Persson, C.; Chen, X.; Chen, Z., Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy 2016, 22, 583-593.

    111. Tang, Y.; Zhang, Y.; Li, W.; Ma, B.; Chen, X., Rational material design for ultrafast rechargeable lithium-ion batteries. Chemical Society Reviews 2015, 44, (17), 5926-5940.

    112. Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G., Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries. Angewandte Chemie-International Edition 2012, 51, (9), 2164-2167.

    113. Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Qi, D. P.; Leow, W. R.; Wei, J. Q.; Yin, S. Y.; Dong, Z. L.; Yazami, R.; Chen, Z.; Chen, X. D., Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries. Angewandte Chemie-International Edition 2014, 53, (49), 13488-13492.

    114. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, (7195), 638.

    115. Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W., Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. Journal of the American Chemical Society 2010, 132, (17), 6124-6130.

    116. Sun, C. H.; Yang, X. H.; Chen, J. S.; Li, Z.; Lou, X. W.; Li, C.; Smith, S. C.; Lu, G. Q. M.; Yang, H. G., Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications 2010, 46, (33), 6129-6131.

    117. Sun, C. H.; Yang, X. H.; Chen, J. S.; Li, Z.; Lou, X. W.; Li, C. Z.; Smith, S. C.; Lu, G. Q.; Yang, H. G., Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chemical Communications 2010, 46, (33), 6129-6131.

    118. Cho, J. S.; Hong, Y. J.; Kang, Y. C., Electrochemical properties of fiber‐in‐tube‐and filled‐structured TiO2 nanofiber anode materials for lithium‐ion batteries. Chemistry–A European Journal 2015, 21, (31), 11082-11087.

    119. Liao, J. Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X. C.; Chen, Z. W., Multifunctional TiO2-C/MnO2 Core-Double-Shell Nanowire Arrays as High-Performance 3D Electrodes for Lithium Ion Batteries. Nano Letters 2013, 13, (11), 5467-5473.

    120. Balogun, M. S.; Qiu, W.; Luo, Y.; Huang, Y.; Yang, H.; Li, M.; Yu, M.; Liang, C.; Fang, P.; Liu, P., Improving the Lithium‐Storage Properties of Self‐Grown Nickel Oxide: A Back‐Up from TiO2 Nanoparticles. ChemElectroChem 2015, 2, (9), 1243-1248.

    121. Park, K.-S.; Kang, J.-G.; Choi, Y.-J.; Lee, S.; Kim, D.-W.; Park, J.-G., Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays. Energy & Environmental Science 2011, 4, (5), 1796-1801.

    122. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, (6217), 1246501.

    123. Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G., Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews 2015, 44, (19), 6684-6696.

    124. Park, K. S.; Kang, J. G.; Choi, Y. J.; Lee, S.; Kim, D. W.; Park, J. G., Long-term, high-rate lithium storage capabilities of TiO2 nanostructured electrodes using 3D self-supported indium tin oxide conducting nanowire arrays. Energy & Environmental Science 2011, 4, (5), 1796-1801.

    125. Yang, S.; Feng, X.; Müllen, K., Sandwich‐like, graphene‐based titania nanosheets with high surface area for fast lithium storage. Advanced Materials 2011, 23, (31), 3575-3579.

    126. Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M., Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly. Advanced Functional Materials 2011, 21, (9), 1717-1722.

    127. Liao, J.-Y.; Xiao, X.; Higgins, D.; Lui, G.; Chen, Z., Self-supported single crystalline H2Ti8O17 nanoarrays as integrated three-dimensional anodes for lithium-ion microbatteries. ACS applied materials & interfaces 2013, 6, (1), 568-574.

    128. Xiang, G.; Li, T.; Zhuang, J.; Wang, X., Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chemical Communications 2010, 46, (36), 6801-6803.

    129. Liao, J.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy & Environmental Science 2012, 5, (2), 5750-5757.

    130. Que, L.; Wang, Z.; Yu, F.; Gu, D., 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors. Journal of Materials Chemistry A 2016, 4, (22), 8716-8723.

    131. Liu, H.; Bi, Z.; Sun, X. G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M., Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Advanced Materials 2011, 23, (30), 3450-3454.

    132. Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y., Carbon− silicon core− shell nanowires as high capacity electrode for lithium ion batteries. Nano letters 2009, 9, (9), 3370-3374.

    QR CODE