簡易檢索 / 詳目顯示

研究生: 曾煥昌
Zeng, Huan-Chang
論文名稱: 利用微接觸壓印方式分離皮質神經生長錐結構,並探討微圖案培養時細胞聚集現象之成因
指導教授: 張兗君
Chang, Yen-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 91
中文關鍵詞: 微接觸壓印微圖案皮質神經細胞生長錐細胞聚集神經誘導模板
外文關鍵詞: microcontact printing, micropattern, cortical neuron, growth cone, cell aggregation, neural guidance, stencil
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結合微機電系統創造新的工具來探討生物問題已經是現今科學界的一項目標,本實驗室也是致力於發展微接觸壓印方法來進行大規模的神經體與神經纖維次細胞級結構分離,如果此系統可以成功建立,將可能是研究方法上的革命進展。然而,在我們所做的實驗當中,事情並不如預期中順利,一再出現的細胞聚集(aggregation)現象使得我們所培養的細胞生長不受控制。為了解決細胞聚集帶來的問題,我們嘗試了多種實驗方法,包括運用多種蛋白壓印 (膠原蛋白、胞外間質),以交聯劑修飾基質(substrate)表面,經由自組裝單層分子印製微圖案,利用神經膠細胞共同培養來支持神經生長以及將細胞直接培養於具有圖案的聚二甲基矽氧烷(polydimethylsiloxane;PDMS )基材上,除了神經膠細胞共同培養以外,所有的嘗試幾乎都不能改善細胞聚集問題,共同培養的方法又容易導致非神經細胞污染,因此也不適合使用。直到我們採用PDMS模板來作為限制細胞貼附區域工具,細胞聚集現象才得以解決,而經由模板培養,我們也意外發現細胞聚集的出現成因,可能是來自於微接觸壓印實驗中,無法讓細胞貼附區域過多,導致漂浮細胞於培養液中,形成細胞團塊後,才沉降到細胞貼附區。經由我們所設計的實驗證實,這些漂浮細胞的確具有貼附能力,且隨著無法貼附區的面積越大,細胞聚集現象越嚴重。而目前配合模板所做的微接觸壓印方法,已經成功培養出正常生長的神經細胞,經由免疫染色觀察,神經纖維末端的生長錐也可以經由此方法限制在微圖案細線末端。接著,只要再稍微調整微圖案設計及模版製作方式,我們將可以得到大量生長錐,以及嘗試進行前突觸的誘導分化,並進行有系統的蛋白質體分析,以研究生長錐發育時的變化及突觸分化的分子機制。


    摘要 目錄 壹、 緒論……………………………………………………………1 貳、 實驗材料與檢測方法…………………………………………13 參、 結果……………………………………………………………38 肆、 討論……………………………………………………………53 伍、 參考文獻………………………………………………………61 陸、 圖表集…………………………………………………………66

    Bani-Yaghoub, M., Tremblay, R., Voicu, R., Mealing, G., Monette, R., Py, C., Faid, K., Sikorska, M. (2005). Neurogenesis and neuronal communication on micropatterned neurochips. Biotechnol Bioeng. 92(3):336-45.
    Bhatia, S. N., Yarmush, M. L., Toner, M. (1997). Controlling Cell Interactions by Micropatterning in Co-Cultures: Hepatocytes and 3T3 Fibroblasts. J. Biomed. Mater. Res., 34, 189-199.
    Blegere, T., Sara Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E.T., Sudhof, T.S. (2002). SynCAM, a synaptic adhesion molecule that frives synapse assembly. Science 297:1525-1531.
    Chang, J.C., Brewer, G.J., Wheeler, B.C.(2003). A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials. 24(17):2863-70.
    Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E.(1998) Micropatterned Surfaces for Control of Cell Shape, Position, and Function. Biotechnology Progress 14 (3): 356-363
    Chotard, C., Salecker, I. (2004). Neurons and glia: team players in axon guidance. Trends in Neurosciences 27 (11): 655-661
    Clark, P., Britland, S., Connolly, P. (1993).Growth cone guidance and neuron morphology on micropatterned laminin surfaces .J Cell Sci 105: 203-212.
    Cornish, T., Branch, D.W., Wheeler, B.C.(2002). Microcontact printing: A versatile technique for the study of synaptogenic molecules. Molecular And Cellular Neuroscience 20 (1): 140-153
    Craig, A.M., Graf, E.R., and Linhoff, M.W. (2006). How to build a central synapse: clues from cell culture. Trends Neurosci. 29, 8–20.
    Delamarche, E., Geissler, M., Bernard, A.(2001). Hydrophilic poly (dimethylsloxane) stamps for microcontact printing. Adv. Mater. 13 (15): 1164+
    Faid, K., Voicu, R., Bani-Yaghoub, M., Tremblay, R., Mealing, G., Py, C., Barjovanu, R.(2005). Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures. Biomed Microdevices. 7(3):179-84
    Ferguson, G. S., Chaudhury, M. K., Biebuyck, H. A., Whitesides, G. M.(1993) . Monolayers on disordered substrates - self-assembly of alkyltrichlorosilanes on surface-modified polyethylene and poly(dimethylsiloxane). Macromolecules 26, 5870.
    Folch, A., Ayon, A., Hurtado, O., Schmidt, M. A., Toner, M.(1999). Molding of Deep Poly(dimethylsiloxane) Microstructures for Microfluidics and Biological Applications. J. Biomech. Eng. 121, 28-34.
    Folch, A., Jo, B.H., Hurtado, O., Beebe, D. J., Toner, M.(2000). Microfabiricated Elastomeric Stencils for Micropatterning Cell Cultures. J. Biomed. Mater. Res. 52, 346-353.
    Fukata, Y., Kimura, T., Kaibuchi, K. (2002). Axon specification in hippocampal neurons. Neuroscience Research 43 305-/315
    Griffith, L. G., Naughton, G.(2000). Tissue Engineering-Current Challenges and Expanding Opportunities. Science 295,1009-1014.
    Harrison, R.S.(1907). Observations on the living developing nerve fiber. Proc Soc. Exp. Biol. Med. 4:140-143
    Heller, D.A., Garga, V., Kelleher, K.J.(2005). Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces. Biomaterials 26 (8): 883-889
    Jin, M., Guan, C.B., Jiang, Y.A., Chen, G., Zhao, C.T., Cui, K., Song, Y.Q., Wu, C.P., Poo, M.M., Yuan, X.B. (2005). Ca2+-dependent regulation of Rho GTPases triggers turning of nerve growth cones. J. Neurosci. 25 (9): 2338-2347
    Kam, L., Shain, W., Turner, J.N., Bizios, R.(2001).Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin. Biomaterials. 22(10):1049-54.
    Kleinfeld, D., Kahler, K. H., Hockberger, P. E.(1988). Controlled Outgrowth of Dissociated Neurons on Patterned Substrates. J. Neurosci. 8, 4098-4120.
    Ko, J.W., Kim, S.H., Chung, H.S., Kim, K., Han, K.H., Kim, H., Jun, H.J., Kaang, B.K., Kim, E.J.(2006) SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron 50 (2): 233-245
    Lauer, L., Ingebrandt, S., Scholl, M., Offenhausser, A.(2001). Aligned microcontact printing of biomolecules on microelectronic device surfaces. IEEE Transaction on Biomedical Engineering 48 (7): 838-842
    Lehnert, D., Wehrle-Haller, B., David, C., Weiland, U., Ballestrem, C., Imhof, B.A., Bastmeyer, M. (2004). Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. Journal of Cell Science 117 (1): 41-52
    Lom, B., Healy, K. E., Hockberger, P. E.(1993). A Versatile Technique for Patterning Biomolecules onto Glass Coverslips. J. Neurosci. Methods 50, 385-397.
    Matsuzawa, M., Liesi, P., Knoll, W.(1996). Chemically modifying glass surfaces to study substratum-guided neurite outgrowth in culture. J Neurosci Methods. 69:189–96.
    Oorschot, D.E., Mclennan, I.S. (1998). The trophic requirements of mature motoneurons. Brain Research, 789 (2): 315-321
    Park, T.H., Shuler, M.L. (2003). Integration of Cell Culture and Microfabrication Technology. Biotechnol. Prog. 19, 243-253
    Quist, A.P., Pavlovic, E., Oscarsson, S. (2005). Recent advances in microcontact printing. Anal Bioanal Chem. 381(3):591-600.
    Rhee, S.W., Taylor, A.M., Tu, C.H.(2005). Patterned cell culture inside microfluidic devices. Lab on A Chip 5 (1): 102-107
    Sanjana, N.E., Fuller, S.B. (2004). A fast flexible ink-jet printing method for patterningdissociated neurons in culture. Journal of Neuroscience Methods 136 151–163
    Scheiffele, P., Fan, J., Choih, J., Fetter, R., Serafini, T. (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657-669.
    Scheiffele, P. (2003). Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26:485-508.
    Scholl, M., Sprossler, C., Denyer, M., Krause, M., Nakajima, K., Maelicke, A., Knoll, W., Offenhausser, A.(2000). Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces. J Neurosci Methods. 104(1):65-75.
    Singhvi, R., Stephanopoulos, G. N., Wang, D. I. C., Kumar, A., Lopez, G. P., Whitesides, G. M., Ingber, D. E.(1994). Engineering Cell Shape and Function. Science, 264, 696-698.
    Stenger, D.A., Hickman, J.J., Bateman, K.E., Ravenscroft, M.S., Ma, W., Pancrazio, J.J., Shaffer, K., Schaffner, A.E., Cribbs, D.H., Cotman,C.W.(1998). Microlithographic determination of axonal/dendritic polarity in cultured hippocampal neurons. J Neurosci Methods. 82:167– 73.
    Stenger, D. A., Gross, G. W., Keefer, E. W., Shaffer, K. M., Andreadis, J. D., Ma, W., Pancrazio, J. J.(2001). Detection of Physiologically Active Compounds Using Cell-Based Biosensors. Trends Biotechnol. 19, 304-309.
    Tai, H.C., Buettner, H.M.(1998). Neurite outgrowth and growth cone morphology on micropatterned surfaces. Biotechnology Progress 14 (3): 364-370
    Takayama, S., McDonald, J. C., Ostuni, E., Liang, M. N., Kenis, P. J. A., Ismagilov, R. F., Whitesides, G. M.(1999). Patterning Cells and Their Environments Using Multiple Laminar Fluid Flows in Capillary Networks. Proc. Natl. Acad. Sci. U.S.A. 96, 5545-5548
    Takayama, S., Ostuni, E., Qian, X., McDonald, J. C., Jiang, X., LeDuc, P., Wu, M.-H., Ingber, D. E., Whitesides, G. M.(2001). Topographical Micropatterning of Poly(dimethylsiloxane) Using Laminar Flows of Liquids in Capillaries. Adv. Mater. 13, 570-574.
    Vogt, A.K., Lauer, L., Knoll, W., Offenhausser, A.(2003). micropatterned substrates for the growth of functional neuronal networks of defined geometry. Biotechnol Progr. 19:1562–8.
    Vogt, A.K., Stefani, F.D., Best, A., (2004) Impact of micropatterned surfaces on neuronal polarity. Journal of Neuroscience Methods 134 ,191–198
    Vogt, A.K., Brewer, G.J., Decker, T.(2005). Independence of synaptic specificity from neuritic guidance. Neuroscience 134 (3): 783-790
    Wyart, C., Ybert, C., Bourdieu, L., Herr C., Prinz, C., Chatenay,D.(2002). Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces. Journal of Neuroscience Methods 117 123-131
    Xia, Y.N., Whitesides, G.M.(1998). Soft lithography. Annual Review of Materials Science 28: 153-184

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE