研究生: |
邱仁豪 Chiu, Jen-Hao |
---|---|
論文名稱: |
在移動式多無人機網路中基於上行傳輸的一種節能方法 Energy-Saving Scheme for Uplink Transmission in Mobile Multi-UAV Networks |
指導教授: |
許健平
Sheu, Jang-Ping |
口試委員: |
洪樂文
Hong, Yao-Win 陳裕賢 Chen, Yuh-Shyan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 無人機通訊 、物聯網 、節能 、上行 、資源分配 、功耗控制 、覆蓋率 |
外文關鍵詞: | UAV communications, Internet of Things, energy saving, uplink, resource allocation, power control, coverage |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,我們探討在多無人機 (UAVs) 網路中上行傳輸的問題。每架無人機將根據所設計的飛行中心、高度和半徑,在負責區域上空動態地飛行,並收集地面設備之數據。我們的目標是最大化減少設備的總傳輸功耗。首先,給定無人機的飛行高度,我們使用動態規劃 (DP) 方法,通過考慮設備的流量需求和無人機的容量限制,將設備分配給適當的無人機服務。接下來,我們使用內點法調整無人機的飛行高度,以進一步最大化減少設備的總傳輸功耗。模擬結果顯示,我們所提出的演算法在總節省傳輸功率方面優於候選演算法。
In this work, we study the multiple unmanned aerial vehicles (UAVs) for uplink transmission in a network. Each UAV is assumed to dynamically hover over the responsible region with a designed flying center, altitude, and radius to collect the data from ground devices. Our objective is to maximize the total saved transmission power of devices compared to the ones using the maximum transmission power to transmit data to UAVs. First, given a flying altitude of UAVs, we use dynamic programming (DP) approach to assign a device to an appropriate UAV by considering the traffic demand of devices and the capacity limitation of UAVs. Next, we use interior-point method to adjust the flying altitude of UAVs to further maximize the total saved transmission power of devices. The simulation results show that the proposed algorithms outperform the candidate algorithms in terms of the total saved transmission power.
[1] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on uavs for wireless networks: Applications, challenges, and open problems,” IEEE Communications Surveys & Tutorials, 2019.
[2] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Communications Magazine, vol. 54, no. 5, pp. 36–42, 2016.
[3] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in uav communication networks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123–1152, 2015.
[4] H. El Hammouti, M. Benjillali, B. Shihada, and M.-S. Alouini, “A distributed mechanism for joint 3d placement and user association in uav-assisted networks,” in IEEE Wireless Commun. Netw. Conf., Marrakech, Morocco, 2019.
[5] C. Q. Juan Qin Zhiqing Wei and Z. Feng, “Edge-prior placement algorithm for uav-mounted base stations,” in IEEE Wireless Commun. Netw. Conf., Marrakech, Morocco, 2019.
[6] T.-S. L. Kuo-Ming Chen Tsung-Hui Chang, “Lifetime maximization for uplink transmission in uav-enabled wireless networks,” in IEEE Wireless Commun. Netw. Conf., Marrakech, Morocco, 2019.
[7] R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-d placement of an aerial base station in next generation cellular networks,” in 2016 IEEE international conference on communications (ICC), IEEE, 2016, pp. 1–5.
[8] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, 2014.
[9] S.-Y. Park, C. S. Shin, D. Jeong, and H. Lee, “Dronenetx: Network reconstruction through connectivity probing and relay deployment by multiple uavs in ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11192–11207, 2018.
[10] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for uav-enabled mobile relaying systems,” IEEE Transactions on Communications, vol. 64, no. 12, pp. 4983–4996, 2016.
[11] P. Zhan, K. Yu, and A. L. Swindlehurst, “Wireless relay communications with unmanned aerial vehicles: Performance and optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 3, pp. 2068–2085, 2011.
[12] N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A crowd surveillance use case,” IEEE Communications Magazine, vol. 55, no. 2, pp. 128–134, 2017.
[13] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial vehiclesbased internet of things services: Comprehensive survey and future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899–922, 2016.
[14] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017.
[15] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks: An overview,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 855–873, 2017.
[16] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned aerial vehicles (uavs) for energy-efficient internet of things communications,” IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7574–7589, 2017.
[17] X. Zhang and L. Duan, “Fast deployment of uav networks for optimal wireless coverage,” IEEE Transactions on Mobile Computing, vol. 18, no. 3, pp. 588–601, 2018.
[18] Y. Zeng and R. Zhang, “Energy-efficient uav communication with trajectory optimization,” IEEE Transactions onWireless Communications, vol. 16, no. 6, pp. 3747–3760, 2017.
[19] M. Mozaffari,W. Saad, M. Bennis, and M. Debbah, “Wireless communication using unmanned aerial vehicles (uavs): Optimal transport theory for hover time optimization,” IEEE Transactions on Wireless Communications, vol. 16, no. 12, pp. 8052–8066, 2017.
[20] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs,” IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp. 3949–3963, 2016.
[21] S. Zhang, H. Zhang, B. Di, and L. Song, “Cellular uav-to-x communications: Design and optimization for multi-uav networks,” IEEE Transactions on Wireless Communications, vol. 18, no. 2, pp. 1346–1359, 2019.
[22] Q.Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multiuav enabled wireless networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.
[23] M. Dawande, J. Kalagnanam, P. Keskinocak, F. S. Salman, and R. Ravi, “Approximation algorithms for the multiple knapsack problem with assignment restrictions,” Journal of combinatorial optimization, vol. 4, no. 2, pp. 171–186, 2000.
[24] S. Martello, “Knapsack problems: Algorithms and computer implementations,”Wiley-Interscience series in discrete mathematics and optimization, 1990.
[25] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
[26] Z. Zhou, J. Feng, B. Gu, B. Ai, S. Mumtaz, J. Rodriguez, and M. Guizani, “When mobile crowd sensing meets uav: Energy-efficient task assignment and route planning,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5526–5538, 2018.
[27] H. Yang, J. Zhang, S. Song, and K. B. Lataief, “Connectivity-aware uav path planning with aerial coverage maps,” 2019.
[28] A. Trotta, F. D. Andreagiovanni, M. Di Felice, E. Natalizio, and K. R. Chowdhury, “When uavs ride a bus: Towards energy-efficient city-scale video surveillance,”
in Ieee infocom 2018-ieee conference on computer communications, IEEE, 2018, pp. 1043–1051.
[29] S. Yucer, F. Tektas, M. V. Kilinc, I. Kandemir, H. Celebi, Y. Genc, and Y. S. Akgul, “Rssi-based outdoor localization with single unmanned aerial vehicle,” 2019.
[30] R.-H. Cheng, Y. P. Hong, and J.-P. Sheu, “Power efficient temporal routing and trajectory adjustment for multi-uav networks,” in ICC 2019-2019 IEEE International Conference on Communications (ICC), IEEE, 2019, pp. 1–6.
[31] S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized convergence theorem and characterization of local optimality,” IEEE Transactions on pattern analysis and machine intelligence, no. 1, pp. 81–87, 1984.
[32] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li, “Automated variable weighting in kmeans type clustering,” IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 5, pp. 657–668, 2005.