研究生: |
鄭統元 Zheng, Tong-Yuan |
---|---|
論文名稱: |
(I) 立體電子效應對雞絨毛蛋白 (HP36) 結構影響之探討; (II) 電子自旋標記聚脯胺酸的合成及電子自旋共振光譜之量測 (I) Stereoelectronic Effects on Villin Headpiece Subdomain (HP36) Structure and Stability; (II) Synthesis and EPR Measurements of Spin-labeled Polyproline Peptides |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 雞絨毛蛋白 、脯胺酸 、立體電子效應 、聚脯胺酸 、電子自旋標記 、電子順磁共振儀 |
外文關鍵詞: | Villin Headpiece Subdomain (HP36), Proline, Stereoelectronic Effects, Polyproline, Spin label, electron paramagnetic resonance (EPR) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分為研究立體電子效應在雞絨毛蛋白上的作用。脯胺酸 (proline) 會形成 exo 或是 endo 的構形,當4R (反式) 位置有拉電子基取代時偏好 Cγ exo 構形,而 4S (順式) 則偏好 Cγ endo 構形,造成這樣的原因我們稱之立體電子效應。在小蛋白 Trp-cage 的研究例子中,增加脯胺酸的 exo 構形傾向時,其螺旋結構穩定度會增加,而此脯胺酸是位於 Trp-cage 螺旋的碳端。為了探討當立體電子效應發生於螺旋的氮端時,是否也能穩定螺旋結構,因此我們利用具有36個胺基酸的雞絨毛蛋白 (HP36) 來作為研究之蛋白模型。經由 CD 量測之變溫實驗與化學誘導變性實驗,我們發現當脯胺酸置換成 4R 位置有拉電子基之脯胺酸衍生物 (4R-proline derivatives) 時, HP36 的穩定度會略為下降,這是因為在 HP36 中的 Pro62 會與 Trp64 有著 proline-aromatic 作用力,所以這樣的置換會破壞 proline-aromatic 作用力,並且也會增加其立體空間障礙,導致HP36 的不穩定。
第二部分為研究聚脯胺酸第二型結構 (polyproline type II, PPII) 的EPR 光譜規則建立。在α-螺旋胜□的例子中,已成功利用兩個電子自旋標記接在胜□上,並利用 EPR 光譜量測胺基酸間之距離。在此我們合成一系列的聚脯胺酸胜□,並成功地製備了含有電子自旋標記的胜□,且進一步用 EPR 光譜量測兩個電子自旋標記之間的距離;在經過一系列的數學運算後,分析計算 EPR 光譜以得到電子自旋標記間之距離。利用這樣的方法計算出 PPII 中,每個胺基酸的距離為 0.31 nm ,這與 PPII 模型的理論值相同,所以我們成功的利用 EPR 光譜來量測 PPII 結構中胺基酸之間的距離。
The first part of this thesis is about stereoelectroic effects on villin headpiece subdomain (HP36). Proline can form either a Cγ exo ring pucker or a Cγ endo ring pucker. An electron-withdrawing substituent at the 4R position of proline makes proline favor an exo ring pucker, while that at the 4S position favors an endo ring pucker due to stereoelectronic effects. Stereoelectronic effects have been shown to tune the stability of a small helical protein, the Trp-cage. In the Trp-cage, increasing the exo ring pucker propensity at C-terminus of the helix can stabilize the protein. To investigate stereoelectronic effects on the N-terminus of an α-helix, we use a 36-residue helical protein, the villin headpiece subdomain (HP36), as our protein model. A few proline derivatives including (4R,2S)-4-hydroxyproline, (4R,2S)-4-methoxyproline, and (4R,2S)-4-fluoroproline were used to replace the proline in HP36. Thermal unfolding and urea denaturation measurements by CD spectroscopy have shown that the mutation destabilized the protein. Our primary results suggest that there are not only stereoelectronic effects but also proline-aromatic interactions and steric effects affecting the structure in this region.
The second part of this thesis is about establishing the PPII spectrum rule by EPR. We utilized double spin labels to get the dipole-dipole moment which can be used to calculate the distance between two spin labels. A series of polyproline peptides were designed and synthesized for this purpose. The spin-labeled peptides were successfully prepared for EPR measurements. An mathematical method was applied to calculate the distance between amino acids in PPII helices. The value of 0.31 nm between two adjacent residues is consistent with the theoretical distance for a PPII helix.
1. Friederich, E., Vancompernolle, K., Louvard, D., Vandekerckhove, J. (1999) Villin function in the organization of the actin cytoskeleton. J. Biol. Chem. 274, 26751-26760
2. Bazari, L. W., Matsudaira, P., Wallek, M., Smeal, T., Jakes, R., and Ahmed, Y. (1988) Villin sequence and peptide map identify six homologous domains. Proc. Natl Acad. Sci. USA 81, 4986-4990
3. George, S. P., Wang, Y., Mathew, S., Srinivasan, K., Khurana, S. (2007). Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders. J. Biol. Chem. 282, 26528–26541
4. Vardar, D., Chishti, A. H., Frank, B. S., Luna, E. J., Noegel, A. A., Oh, S. W., and McKnight, C. J. (2002) Villin-type headpiece domains show a wide range of F-actin-binding affinities. Cell Motil. Cytoskeleton 52, 9-21
5. Meng, J., Vardar, D., Wang, Y., Guo, H. C., Head, J. F., and Mcknight, C. J., (2005) High-resolution crystal structures of villin headpiece and mutants with reduced F-actin binding activity. Biochemistry 44, 11963 -11973
6. Panebra A., Ma S. X., Zhai L. W., Wang X. T., Rhee S. G., Khurana S. (2001) Regulation of phospholipase C-gamma(1) by the actin-regulatory protein villin. Am. J. Physiol., Cell Physiol. 281, 1046–58
7. McKnight, C. J., Doering, D. S., Matsudaira, P. T., and Kim, P. S., (1996) A thermostable 35-residue subdomain within villin headpiece. J. Mol. Biol. 260, 126–134
8. Brewer, S. H., Vu, D. M., Tang, Y., Li, Y., Franzen, S., Raleigh, D. P., and Dyer, R. B. (2005) Effect of modulating unfolded state structure on the folding kinetics of the villin headpiece subdomain. Proc. Natl. Acad. Sci. USA 102, 16662–16667.
9. Xiao, S., Bi, Y., Shan, B., and Raleigh, D. P. (2009) Analysis of core packing in a cooperatively folded minature protein: the ultrafast folding villin headpiece helical subdomain. Biochemistry, Just Accepted Manuscript • DOI: 10.1021/bi8021763
10. Vermeulen, W., Vanhaesebrouck, P., Troys, M. V., Verschueren, M., Fant, F., Goethals, M., Ampe, C., Martins, J. C., and Borremans, F. A. M. (2004) Solution structures of the C-terminal headpiece subdomains of human villin and advillin, evaluation of headpiece F-actin-binding requirements. Protein Sci. 13, 1276-1287.
11. Bhattacharyya, R. and Chakrabarti, P. (2003) Stereospecific interactions of proline residues in protein structures and complexes. J. Mol. Biol. 331, 925–940.
12. Vermeulen, W., Troys, M. V., Bourry, D., Rossenu, D. D. S., Goethals, M., Borremans, F. A. M., Vandekerckhove, J., Martins, J. C. and Ampe, C., (2006) Identification of the PXW sequence as a structural gatekeeper of the headpiece C-terminal subdomain fold. J. Mol. Biol. 359, 1277–1292
13. DeRider M. L., Wilkens S. J., Waddell M. J., Bretscher L. E., Weinhold F., Raines R. T., and Markley J. L. (2002) Collagen stability: Insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J. Am. Chem. Soc. 124, 2497–2505.
14. Hinderaker, M. P. and Raines, R. T. (2002) An electronic effect on protein structure. Protein Sci. 12, 1188-1194.
15. Taylor, C. M., Hardr□, R., and Edwards, P. J. B., (2005). The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides. J. Org. Chem. 70, 1306-1315
16. Naduthambi, D. and Zondlo, N. J. (2006) Stereoelectronic tuning of the structure and stability of the Trp cage miniprotein. J. Am. Chem. Soc. 128, 12430-12431
17. Merrifield, R. B. (1986) Soild phase peptide synthesis. Science 232, 341-347.
18. 張湘戎,體抑素胜□分子內雙硫鍵建構之研究,碩士學位論文,中原大學化學研究所,2003。
19. Berova, N., Nakanishi, K., and Woody, R. (2000) “Circular dichroism : Principles and applications.”
20. Skoog, D. A., Holler, F. J., and Nieman, T. A. (1998) “Principles of instrumental analysis.” Saunders College
21. 程郁郁,含假異胞嘧啶及其衍生物之去氧寡核酸鏈在水溶液中形成核酸三螺旋之研究,碩士論文,中國文化大學應用化學研究所,1997
22. Lightner, D. A., and Gurst, J. E. (2000) Organic conformational analysis and stereochemistry from circular dichroism spectroscopy. John Wiley & Sons, Inc.
23. Velluz, L., M. Legrand, M. Grosjean, (1965). “Optical circular dichroism.” Academic Press, Inc.
24. Fasman, G. D. (1996) ” Circular dichroism and the conformation analysis of biomolecules.” Plenum Press.
25. Matsuo, K., Yonehara, R., and Gekko, K. (2005) Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy. J. Biochem. 138, 79-88
26. Duan, Y., Wang, L., and Kollman, P. A. (1998). The early stage of folding of villin headpiece subdomain observed in a 200-nanosecond fully solvated molecular dynamics simulation. Proc. Natl Acad. Sci. USA, 95, 9897–9902.
27. Kotch, F. W., Guzei, I. A., and Raines, R. T. (2008) Stabilization of the Collagen Triple Helix by O-Methylation of Hydroxyproline Residues. J. Am. Chem. Soc. 130, 2952-2953.
28. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411-2423.
29. Rohl, C. A. and Baldwin, R. L. (1997) Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides. Biochemistry 36, 8435-8442.
30. Wang, M., Tang, Y., Sato, S., Vugmeyster, L., McKnight, C. J., and Raleigh, D. P. (2003) Dynamic NMR line-shape analysis demonstrates that the villin headpiece subdomain folds on the microsecond time scale. J. Am. Chem. Soc. 125, 6032-6033.
31. Miller, S., Janin, J., Lesk, A. M., and Chothia, C. (1987) Interior and surface of monomeric proteins. J. Mol. Biol. 196, 641-656.
32. Adzhubei A. A., and Sternberg, M. J. E. (1993) Left-handed polyproline II helices commonly occur in globular proteins. J. Mol. Biol. 229, 472-493.
33. Rabenstein, M. D. and Shint, Y. K. (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. 92, 8239-8243,
34. Odom, B., Hanneke, D., D'Urso, B., and Gabrielse, G. (2006) New measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801
35. Horng, J. C. and Raines, R. T., (2006) Stereoelectronic effects on polyproline conformation. Protein Sci. 15, 74-83.
36. Steinhoff, H. J. (2002) Methods for study of protein dynamics and protein-protein interaction in protein-ubiquitination by electron paramagnetic resonance spectroscopy. Front. Biosci. 7, c97-110.
37. Altenbach, C., Oh, K. J., Trabanino, R. J., Hideg, K., and Hubbell, W. L. (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40, 15471-15482