簡易檢索 / 詳目顯示

研究生: 彭士齊
Peng, Shih-Chi
論文名稱: A Systematic Approach on Computational Modeling of Integrated Biological Networks
系統化生物網路整合模型之建構與應用
指導教授: 唐傳義
Tang, Chuan-Yi
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 75
中文關鍵詞: 訊號調控網路基因調控網路發炎反應系統生物
外文關鍵詞: signal trasduction, gene regulation, inflammation, systems biology
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物網路模型的建構對於系統生物學來說是一個很重要的研究主題。一般而言,在分子生物層次,生物網路可以分為訊息傳遞網路、基因調控網路及代謝網路。過去大部分的研究都著重在單一類別的分子網路建構,卻忽略了探討整合適網路中,不同階層網路間的的交互作用。因此,發展一個系統化的方法,整合理論假設及實驗資料,建立一個整合性的生物網路模型並探討其生理意義是很必要的。
    此研究是以單一細胞的整合性網路為研究對象,並以連結訊號傳遞網路以及基因調控網路為目標。我們提出一個結合正向工程及逆向工程的系統化方法來連結訊號傳遞反應及基因的表現。為了證明此一方法的可行性,我們以連結 NF-κB 的訊息傳遞網路及基因調控為例子。NF-κB 已經被證實在發炎反應中扮演非常關鍵的角色,因此我們想看看不同訊號對於基因表現的影響。首先,我們利用正向工程(混合式功能斐式圖)建立 NF-κB 的訊息傳遞模型,以及利用逆向工程(網路元件分析)建立其基因調控網路。接著我們連接兩個網路並且成功辨別出在不同刺激強度下的 IKK 活性曲線,而此結果也與生物實驗驗證吻合。另外,我們還發現一些發炎反應中重要之細胞生長素和趨化素基因(TNF-α、IL-1、IL-6、CXCL1、CXCL2 和 CCL3)的表現曲線和 NF-κB 的活性曲線相當一致。而 NF-κB 對於這些基因在我們建立的調控網路裡有較強的影響力。這些不同強度發炎刺激下的調控影響,反應 NF-κB 在急性發炎所扮演的關鍵角色,並可進一步幫助我們去了解系統性發炎的併發症。
    我們成功地整合訊息傳遞網路以及基因調控網路。未來若有更完整之訊息傳遞動力學方程式係數,將可更進一步討論複雜訊號傳遞之串音問題。這個研究已經對於生物系統整合模型的建立提供了提供了全新的視野。


    Network modeling is an important topic on systems biology. Several different kinds of biological network can be distinguished at the molecular level: signal transduction networks or protein-protein interaction networks, gene regulatory networks, and metabolic networks. Although a great deal of effort has been made on modeling these distinct types of molecular networks respectively, the networks of interactions and altogether different level of detail on integrated networks seems to be lacking. Thus, a systematic approach is needed to integrate experimental data and theoretical hypotheses to integrate the different biological networks and identify the physiological consequences.
    In this study, we focus exclusively on molecular processes that take place within a cell, and specifically on integration two distinct types of cellular mechanisms: signal transduction and transcriptional regulation. We proposed a systematic approach that combines forward and reverse engineering to link the signal transduction cascade with the gene responses. To demonstrate the feasibility of our strategy, we focused on linking the NF-κB signaling pathway with the inflammatory gene regulatory responses because NF-κB has long been recognized to play a crucial role in inflammation. We first utilized forward engineering (Hybrid Functional Petri Nets) to construct the NF-κB signaling pathway and reverse engineering (Network Components Analysis) to build a gene regulatory network (GRN). Then, we demonstrated that the corresponding IKK profiles can be identified in the GRN and are consistent with the experimental validation of the IKK kinase assay. We found that the time-lapse gene expression of several cytokines and chemokines (TNF-α, IL-1, IL-6, CXCL1, CXCL2 and CCL3) is concordant with the NF-κB activity profile, and these genes have stronger influence strength within the GRN. Such regulatory effects have highlighted the crucial roles of NF-κB signaling in the acute inflammatory response and enhance our understanding of the systemic inflammatory response syndrome.
    We successfully identified and distinguished the corresponding signaling profiles among three microarray datasets with different stimuli strengths. In our model, the crucial genes of the NF-κB regulatory network were also identified to reflect the biological consequences of inflammation. With the experimental validation, our strategy is thus an effective solution to decipher cross-talk effects when attempting to integrate new kinetic parameters from other signal transduction pathways. The strategy also provides new insight for systems biology modeling to link any signal transduction pathways with the responses of downstream genes of interest.

    摘要 I ABSTRACT III CONTENTS VI FIGURES VIII TABLES IX CHAPTER 1 INTRODUCTION 1 CHAPTER 2 MODELING TECHNOLOGIES 7 2.1 PARTS LIST 7 2.2 TOPOLOGY MODELS 9 2.3 CONTROL LOGICS MODELS 10 2.3.1 Boolean Networks 10 2.3.2 Bayesian Networks 12 2.4 DYNAMIC MODELS 14 2.4.1 Difference and Differential equation models 15 2.4.2 Petri Net 17 2.5 REVERSE ENGINEERING AND SYNTHETIC NETWORKS 22 2.5.1 Reverse Engineering of Gene Regulatory Networks 22 2.5.2 Synthetic networks 25 CHAPTER 3 SYSTEMATIC APPROACH BY FORWARD AND REVERSE ENGINEERING 27 3.1 OVERVIEW OF THE STRATEGY 27 3.2 NETWORK COMPONENT ANALYSIS 29 3.3 FORWARD SIMULATION BY HYBRID FUNCTIONAL PETRI-NET 31 3.4 NORMALIZING AND MAPPING THE PATTERN OF TRANSCRIPTION FACTOR PROFILES 32 CHAPTER 4 NF-ΚB SIGNALING–INDUCED GENE EXPRESSION RESPONSES IN INFLAMMATION 34 4.1 NF-ΚB SIGNALING PATHWAY 34 4.2 THE RECONSTRUCTION OF THE TRANSCRIPTIONAL ACTIVITY OF NF-ΚB BY NCA 36 4.3 IKK–NF-ΚB SIGNALING SIMULATION 44 4.4 LINKING THE NF-ΚB SIGNALING PATHWAY TO THE CORRESPONDING CHANGES IN GENE EXPRESSION 51 CHAPTER 5 EXPERIMENTAL VALIDATIONS AND MODEL INTERPRETATION 53 5.1 IKK KINASE ASSAY 53 5.2 MODEL INTERPRETATION 54 5.3 CONCLUSIONS 60 REFERENCES 61 APPENDIX 1 ACTIVITY AND STRENGTH MATRICES 72

    1. Andrianantoandro, E., S. Basu, et al. (2006). "Synthetic biology: new engineering rules for an emerging discipline." Mol Syst Biol 2: 2006 0028.
    2. Basu, S., R. Mehreja, et al. (2004). "Spatiotemporal control of gene expression with pulse-generating networks." Proc Natl Acad Sci U S A 101(17): 6355-6360.
    3. Bhalla, U. S. and R. Iyengar (1999). "Emergent properties of networks of biological signaling pathways." Science 283(5400): 381-387.
    4. Boldrick, J. C., A. A. Alizadeh, et al. (2002). "Stereotyped and specific gene expression programs in human innate immune responses to bacteria." Proc Natl Acad Sci U S A 99(2): 972-977.
    5. Cateau, H. and S. Tanaka (2002). "Kinetic analysis of multisite phosphorylation using analytic solutions to Michaelis-Menten equations." J Theor Biol 217(1): 1-14.
    6. Chee, M., R. Yang, et al. (1996). "Accessing genetic information with high-density DNA arrays." Science 274(5287): 610-614.
    7. Chen, T., H. L. He, et al. (1999). "Modeling gene expression with differential equations." Pac Symp Biocomput: 29-40.
    8. Cheong, R., A. Bergmann, et al. (2006). "Transient IkappaB kinase activity mediates temporal NF-kappaB dynamics in response to a wide range of tumor necrosis factor-alpha doses." J Biol Chem 281(5): 2945-2950.
    9. Cheong, R., A. Hoffmann, et al. (2008). "Understanding NF-kappaB signaling via mathematical modeling." Mol Syst Biol 4: 192.
    10. Cho, K. H. and O. Wolkenhauer (2003). "Analysis and modelling of signal transduction pathways in systems biology." Biochem Soc Trans 31(Pt 6): 1503-1509.
    11. D'Haeseleer, P., S. Liang, et al. (2000). "Genetic network inference: from co-expression clustering to reverse engineering." Bioinformatics 16(8): 707-726.
    12. D'Haeseleer, P., X. Wen, et al. (1999). "Linear modeling of mRNA expression levels during CNS development and injury." Pac Symp Biocomput: 41-52.
    13. De Plaen, I. G., X. B. Han, et al. (2006). "Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: independence from endogenous TNF-alpha and platelet-activating factor." Immunology 118(2): 153-163.
    14. de Silva, E. and M. P. Stumpf (2005). "Complex networks and simple models in biology." J R Soc Interface 2(5): 419-430.
    15. Dinarello, C. A. (1997). "Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock." Chest 112(6 Suppl): 321S-329S.
    16. Dunne, A. and L. A. O'Neill (2003). "The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense." Sci STKE 2003(171): re3.
    17. Durocher, A., M. C. Becq, et al. (1991). "[TNF and sepsis]." Ann Med Interne (Paris) 142(2): 91-94.
    18. Endler, L., N. Rodriguez, et al. (2009). "Designing and encoding models for synthetic biology." J R Soc Interface 6 Suppl 4: S405-417.
    19. Febbraio, M. A. and B. K. Pedersen (2005). "Contraction-induced myokine production and release: is skeletal muscle an endocrine organ?" Exerc Sport Sci Rev 33(3): 114-119.
    20. Forsten-Williams, K., C. C. Chua, et al. (2005). "The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling." J Theor Biol 233(4): 483-499.
    21. Friedman, N., M. Linial, et al. (2000). "Using Bayesian networks to analyze expression data." J Comput Biol 7(3-4): 601-620.
    22. Gardner, T. S. and J. J. Faith (2005). "Reverse-engineering transcription control networks." Phys. Life Rev 2: 65-88.
    23. Gerondakis, S., M. Grossmann, et al. (1999). "Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts." Oncogene 18(49): 6888-6895.
    24. Ghosh, S., M. J. May, et al. (1998). "NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses." Annu Rev Immunol 16: 225-260.
    25. Goldstein, B., J. R. Faeder, et al. (2004). "Mathematical and computational models of immune-receptor signalling." Nat Rev Immunol 4(6): 445-456.
    26. Greengard, P. (2001). "The neurobiology of slow synaptic transmission." Science 294(5544): 1024-1030.
    27. Guergnon, J., M. Chaussepied, et al. (2003). "A tumour necrosis factor alpha autocrine loop contributes to proliferation and nuclear factor-kappaB activation of Theileria parva-transformed B cells." Cell Microbiol 5(10): 709-716.
    28. Hatzimanikatis, V. (1999). "Nonlinear metabolic control analysis." Metab Eng 1(1): 75-87.
    29. Hayden, M. S., A. P. West, et al. (2006). "NF-kappaB and the immune response." Oncogene 25(51): 6758-6780.
    30. Helikar, T., J. Konvalina, et al. (2008). "Emergent decision-making in biological signal transduction networks." Proc Natl Acad Sci U S A 105(6): 1913-1918.
    31. Hoffmann, A., A. Levchenko, et al. (2002). "The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation." Science 298(5596): 1241-1245.
    32. Husmeier, D. (2003). "Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks." Bioinformatics 19(17): 2271-2282.
    33. Janes, K. A. and M. B. Yaffe (2006). "Data-driven modelling of signal-transduction networks." Nat Rev Mol Cell Biol 7(11): 820-828.
    34. Kaern, M., W. J. Blake, et al. (2003). "The engineering of gene regulatory networks." Annu Rev Biomed Eng 5: 179-206.
    35. Karin, M. and M. Delhase (2000). "The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling." Semin Immunol 12(1): 85-98.
    36. Kauffman, S. (1969). "Homeostasis and differentiation in random genetic control networks." Nature 224(5215): 177-178.
    37. Kaznessis, Y. N. (2007). "Models for synthetic biology." BMC Syst Biol 1: 47.
    38. Kaznessis, Y. N. (2009). "Multiscale models for synthetic biology." Conf Proc IEEE Eng Med Biol Soc 2009: 6408-6411.
    39. Kearns, J. D., S. Basak, et al. (2006). "IκBε provides negative feedback to control NF-kappaB oscillations, signaling dynamics, and inflammatory gene expression." J Cell Biol 173(5): 659-664.
    40. Kestler, H. A., C. Wawra, et al. (2008). "Network modeling of signal transduction: establishing the global view." Bioessays 30(11-12): 1110-1125.
    41. Kitano, H. (2005). "International alliances for quantitative modeling in systems biology." Mol Syst Biol 1: 2005 0007.
    42. Li, Q. and I. M. Verma (2002). "NF-kappaB regulation in the immune system." Nat Rev Immunol 2(10): 725-734.
    43. Liang, S., S. Fuhrman, et al. (1998). "Reveal, a general reverse engineering algorithm for inference of genetic network architectures." Pac Symp Biocomput: 18-29.
    44. Liao, J. C., R. Boscolo, et al. (2003). "Network component analysis: reconstruction of regulatory signals in biological systems." Proc Natl Acad Sci U S A 100(26): 15522-15527.
    45. Liebermeister, W. (2002). "Linear modes of gene expression determined by independent component analysis." Bioinformatics 18(1): 51-60.
    46. Liou, H. C. (2002). "Regulation of the immune system by NF-kappaB and IkappaB." J Biochem Mol Biol 35(6): 537-546.
    47. Lipniacki, T., P. Paszek, et al. (2004). "Mathematical model of NF-kappaB regulatory module." J Theor Biol 228(2): 195-215.
    48. Liu, Y. and H. Zhao (2004). "A computational approach for ordering signal transduction pathway components from genomics and proteomics Data." BMC Bioinformatics 5: 158.
    49. Makino, T., Y. Noguchi, et al. (1998). "Circulating interleukin 6 concentrations and insulin resistance in patients with cancer." Br J Surg 85(12): 1658-1662.
    50. Martin, S., Z. Zhang, et al. (2007). "Boolean dynamics of genetic regulatory networks inferred from microarray time series data." Bioinformatics 23(7): 866-874.
    51. Matsuno, H., Y. Tanaka, et al. (2003). "Biopathways representation and simulation on hybrid functional Petri net." In Silico Biol 3(3): 389-404.
    52. Matys, V., O. V. Kel-Margoulis, et al. (2006). "TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes." Nucleic Acids Res 34(Database issue): D108-110.
    53. Meng, T. C., S. Somani, et al. (2004). "Modeling and simulation of biological systems with stochasticity." In Silico Biol 4(3): 293-309.
    54. Milo, R., S. Itzkovitz, et al. (2004). "Superfamilies of evolved and designed networks." Science 303(5663): 1538-1542.
    55. Moynagh, P. N. (2005). "The NF-kappaB pathway." J Cell Sci 118(Pt 20): 4589-4592.
    56. Nagasaki, M., A. Doi, et al. (2003). "Genomic Object Net: I. A platform for modelling and simulating biopathways." Appl Bioinformatics 2(3): 181-184.
    57. Netea, M. G., J. W. van der Meer, et al. (2003). "Proinflammatory cytokines and sepsis syndrome: not enough, or too much of a good thing?" Trends Immunol 24(5): 254-258.
    58. Neves, S. R. and R. Iyengar (2002). "Modeling of signaling networks." Bioessays 24(12): 1110-1117.
    59. Peng, S. C., H. M. Chang, et al. (2004). Modeling Signal Transduction of Neural System by Hybrid Petri Net Representation. Operations Research Proceedings, Tilburg, Springer.
    60. Pournara, I. and L. Wernisch (2004). "Reconstruction of gene networks using Bayesian learning and manipulation experiments." Bioinformatics 20(17): 2934-2942.
    61. Raychaudhuri, S., J. M. Stuart, et al. (2000). "Principal components analysis to summarize microarray experiments: application to sporulation time series." Pac Symp Biocomput: 455-466.
    62. Repsilber, D., H. Liljenstrom, et al. (2002). "Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses." Biosystems 66(1-2): 31-41.
    63. Schena, M., D. Shalon, et al. (1995). "Quantitative monitoring of gene expression patterns with a complementary DNA microarray." Science 270(5235): 467-470.
    64. Schlitt, T. and A. Brazma (2002). "Learning about gene regulatory networks from gene deletion experiments." Comp Funct Genomics 3(6): 499-503.
    65. Schlitt, T. and A. Brazma (2007). "Current approaches to gene regulatory network modelling." BMC Bioinformatics 8 Suppl 6: S9.
    66. Sharif, O., V. N. Bolshakov, et al. (2007). "Transcriptional profiling of the LPS induced NF-kappaB response in macrophages." BMC Immunol 8: 1.
    67. Shen-Orr, S. S., R. Milo, et al. (2002). "Network motifs in the transcriptional regulation network of Escherichia coli." Nat Genet 31(1): 64-68.
    68. Snoep, J. L. (2005). "The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level." Curr Opin Biotechnol 16(3): 336-343.
    69. Soranzo, N., G. Bianconi, et al. (2007). "Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data." Bioinformatics 23(13): 1640-1647.
    70. Steffen, M., A. Petti, et al. (2002). "Automated modelling of signal transduction networks." BMC Bioinformatics 3: 34.
    71. Stucki, J. W. and H. U. Simon (2005). "Mathematical modeling of the regulation of caspase-3 activation and degradation." J Theor Biol 234(1): 123-131.
    72. Suresh Babu, C. V., E. Joo Song, et al. (2006). "Modeling and simulation in signal transduction pathways: a systems biology approach." Biochimie 88(3-4): 277-283.
    73. Tak, P. P. and G. S. Firestein (2001). "NF-kappaB: a key role in inflammatory diseases." J Clin Invest 107(1): 7-11.
    74. Takahashi, H., T. Tashiro, et al. (2002). "An essential role of macrophage inflammatory protein 1alpha/CCL3 on the expression of host's innate immunities against infectious complications." J Leukoc Biol 72(6): 1190-1197.
    75. Tegner, J., M. K. Yeung, et al. (2003). "Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling." Proc Natl Acad Sci U S A 100(10): 5944-5949.
    76. Tew, K. L., X. L. Li, et al. (2007). "Functional centrality: detecting lethality of proteins in protein interaction networks." Genome Inform 19: 166-177.
    77. Wagner, T. H., A. M. Drewry, et al. (2007). "Surviving sepsis: bcl-2 overexpression modulates splenocyte transcriptional responses in vivo." Am J Physiol Regul Integr Comp Physiol 292(4): R1751-1759.
    78. Wang, Y., T. Joshi, et al. (2006). "Inferring gene regulatory networks from multiple microarray datasets." Bioinformatics 22(19): 2413-2420.
    79. Watts, D. J. and S. H. Strogatz (1998). "Collective dynamics of 'small-world' networks." Nature 393(6684): 440-442.
    80. Werner, S. L., D. Barken, et al. (2005). "Stimulus specificity of gene expression programs determined by temporal control of IKK activity." Science 309(5742): 1857-1861.
    81. Yamamoto, Y. and R. B. Gaynor (2001). "Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer." J Clin Invest 107(2): 135-142.
    82. Yang, C. R., B. E. Shapiro, et al. (2005). "A mathematical model for the branched chain amino acid biosynthetic pathways of Escherichia coli K12." J Biol Chem 280(12): 11224-11232.
    83. Zak, D. E., G. E. Gonye, et al. (2003). "Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network." Genome Res 13(11): 2396-2405.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE