研究生: |
羅悅瑜 Lo, Yueh-Yu |
---|---|
論文名稱: |
探討鉤端螺旋體外膜脂蛋白LipL32之致病機制 The pathogenesis mechanism of outer membrane lipoprotein LipL32 from pathogenic Leptospira |
指導教授: |
潘榮隆
Rong-Long Pan |
口試委員: |
楊智偉
Yang, Chih-Wei 孫玉珠 Sun, Yuh-Ju 許翔皓 Hsu, Hsiang-Hao 張文綺 Chang, Wen-Chi |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 原子力顯微鏡 、鈣結合蛋白質 、脂蛋白 、蛋白質之交互作用 、第二型類鐸受體 、鉤端螺旋體病 、脂蛋白32 |
外文關鍵詞: | Atomic force microscopy, Calcium binding proteins, Lipoprotein, Protein-protein interactions, Toll-like receptors 2 (TLR 2), Leptospirosis, LipL32 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鉤端螺旋體病(Leptospirosis)是全世界常見的人畜共通傳染病,其病因由鉤端螺旋體(Leptospira)感染所引起的疾病,先前的研究指出鉤端螺旋體外套膜中存在一個主要脂蛋白LipL32,這個脂蛋白具有一個非典型的polyD 區域(D161DDDDGDD168),從已解構的LipL32 晶體結構發現這個非典型的polyD 區域是鈣離子結合的區域,另外也有一些胺基酸參與在與鈣離子的結合,這些胺基酸包括了Asp132,Thr133,Asp164,Asp165 以及Tyr178。此篇論文的目的在於決定鈣離子在LipL32 所扮演的角色以及鈣離子參與在LipL32與第二型類鐸受體結合之間的關係,進而探討引發腎臟細胞發炎的機制。我們利用定點突變(Site-directed mutagenesis)將這些參與鈣離子結合的胺基酸進行突變並觀察這些突變後所產生的現象,首先由光譜學方法觀察這些胺基酸突變後會造成LipL32 的構型改變且使LipL32 失去與鈣離子結合的能力。此外,利用酵素連結免疫吸附法(ELISA)與原子力顯微鏡(AFM)分析LipL32 與第二型類鐸受體結合能力也會因這些胺基酸突變而減少,更進一步研究LipL32 所引發腎臟的發炎反應因子如hCXCL8/IL-8,hCCL2/MCP-1,hMMP7以及hTNF-α 等發現這些突變株也會降低這些發炎反應的產生。根據以上的研究所得到的結論,我們發現這些參與鈣離子結合的胺基酸在LipL32 中扮演重要的角色,除了與鈣離子結合外也會使LipL32 產生構型變化進而影響LipL32 與第二型類鐸受體的結合與其下游所產生的發炎反應因子及其後所造成的致病效應。
Leptospirosis is the most widespread zoonosis caused by the pathogenic Leptospira worldwide. LipL32, a 32-kDa lipoprotein, is the most abundant protein on the outer membrane of Leptospira and has an atypical poly(Asp) motif (161DDDDDGDD168). The x-ray crystallographic structure of LipL32 revealed that the calcium-binding cluster of LipL32 includes several essential residues Asp132, Thr133, Asp164, Asp165, and Tyr178. The goals of this study were to determine possible roles of the Ca2+-binding cluster for the interaction of LipL32 with Toll-like receptor 2 (TLR2) in induced inflammatory responses of human kidney cells. Site-directed mutagenesis was employed to individually mutate Ca2+-binding residues of LipL32 to Ala, and their effects were subsequently observed. These mutations abolished primarily the structural integrity of the calcium-binding cluster in LipL32. The binding assay and atomic force microscopy analysis further demonstrated the decreased binding capability of LipL32 mutants to TLR2. Inflammatory responses induced by LipL32 variants, as determined by TLR2 pathway intermediates hCXCL8/IL-8, hCCL2/MCP-1, hMMP7, and hTNF-α, were also lessened. In conclusion, the calcium-binding cluster of LipL32 plays essential roles in presumably sustaining LipL32 conformation for its proper association with TLR2 to elicit inflammatory responses in human renal cells.
REFERENCES
Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-680
Alexopoulou, L., Thomas, V., Schnare, M., Lobet, Y., Anguita, J., Schoen, R. T., Medzhitov, R., Fikrig, E., and Flavell, R. A. (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat. Med. 8, 878-884
Allen, S., Chen, X., Davies, J., Davies, M. C., Dawkes, A. C., Edwards, J. C., Roberts, C. J., Sefton, J., Tendler, S. J., and Williams, P. M. (1997) Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 36, 7457-7463
Anders, H. J., Banas, B., and Schlondorff, D. (2004) Signaling danger: Toll-like receptors and their potential roles in kidney disease. J. Am. Soc. Nephrol. 15, 854-867
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
Brosh, R. M., Jr., Li, J. L., Kenny, M. K., Karow, J. K., Cooper, M. P., Kureekattil, R. P., Hickson, I. D., and Bohr, V. A. (2000) Replication protein A physically interacts with the Bloom’s syndrome protein and stimulates its helicase activity. J. Biol. Chem. 275, 23500-23508
Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J. (2004) ClusPro: a fully automated algorithm for protein-protein docking Nucleic Acids Research, 32, W96-9.
Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J. (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 20(1):45-50
Dolhnikoff, M., Mauad, T., Bethlem, E. P., and Carvalho, C. R. (2007) Pathology and pathophysiology of pulmonary manifestations in leptospirosis. Braz. J. Infect. Dis. 11, 142-148
Farr, R. W. (1995) Leptospirosis. Clin. Infect. Dis. 21, 1-8
Gasparian, M. E., Bychkov, M. L., Dolgikh, D. A., and Kirpichnikov, M. P. (2011) Strategy for improvement of enteropeptidase efficiency in tag removal processes. Protein Expres. Purif. 79, 191-196
Haake, D. A., Chao, G., Zuerner, R. L., Barnett, J. K., Barnett, D., Mazel, M., Matsunaga, J., Levett, P. N., and Bolin, C. A. (2000) The leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect. Immun. 68, 2276-2285
Hauk, P., Guzzo, C. R., Roman Ramos, H., Ho, P. L., and Farah, C. S. (2009) Structure and calcium-binding activity of LipL32, the major surface antigen of pathogenic Leptospira sp. J. Mol. Biol. 390, 722-736
Hauk, P., Barbosa, A. S., Ho, P. L., and Farah, C. S. (2012) Calcium binding to Leptospira outer membrane antigen LipL32 is not necessary for its interaction with plasma fibronectin, collagen type IV, and plasminogen. J. Biol. Chem. 287, 4826-4834
Hoke, D. E., S. Egan, et al. (2008). LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infect Immun 76(5): 2063-2069
Hsu, S. H., Hsiao Y. Y., Liu P.F., Lin S.M., Luo Y. Y., Pan R. L. (2009) Purification, characterization, and spectral analyses of histidine-tagged vacuolar H+-pyrophosphatase expressed in yeast. Bot. Stud. 50, 291-301
Hsu, S. H., Lo, Y. Y., Tung, J. Y., Ko, Y. C., Sun, Y. J., Hung, C. C., Yang, C. W., Tseng, F. G., Fu, C. C., and Pan, R. L. (2010) Leptospiral outer membrane lipoprotein LipL32 binding on toll-like receptor 2 of renal cells as determined with an atomic force microscope. Biochemistry 49, 5408-5417
Hung, C. C., Chang, C. T., Chen, K. H., Tian, Y. C., Wu, M. S., Pan, M. J., Vandewalle, A., Yang, C. W. (2006) Upregulation of chemokine CXCL1/KC by leptospiral membrane lipoprotein preparation in renal tubule epithelial cells. Kidney Int. 69,1814-22.
Hung, C. C., Chang, C. T., Tian, Y. C., Wu, M. S., Yu, C. C., Pan, M. J., Vandewalle, A., and Yang, C. W. (2006) Leptospiral membrane proteins stimulate pro-inflammatory chemokines secretion by renal tubule epithelial cells through Toll-like receptor 2 and p38 mitogen activated protein kinase. Nephrol. Dial. Transplant. 21, 898-910
Ivey, D. M., Guffanti, A. A., Zemsky, J., Pinner, E., Karpel, R., Padan, E., Schuldiner, S., and Krulwich, T. A. (1993) Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J. Biol. Chem. 268, 11296-11303
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685.
Lee, S. H., Kim, K. A., Park, Y. G., Seong, I. W., Kim, M. J., and Lee, Y. J. (2000) Identification and partial characterization of a novel hemolysin from Leptospira interrogans serovar lai. Gene 254, 19-28
Levett, P. N. (2001) Leptospirosis. Clin. Microbiol. Rev. 14, 296-326
Lin, Y. P., Raman, R., Sharma, Y., and Chang, Y. F. (2008) Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J. Biol. Chem. 283, 25140-25149
Kim, H., Arakawa, H., Hatae, N., Sugimoto, Y., Matsumoto, O., Osada, T., Ichikawa, A., and Ikai, A. (2006) Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM. Ultramicroscopy 106, 652-662
Kirsch, R. D., and Joly, E. (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res. 26, 1848-1850
Ko, A.I., Goarant, C., Picardeau, M. (2009) Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol. 7(10):736-47.
Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S. (2006) PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 65(2):392-406
Kozakov, D., Hall, D. R., Beglov, D., Brenke, R., Comeau, S. R., Shen, Y., Li, K., Zheng, J., Vakili, P., Paschalidis, I. C. and Vajda, S. (2010) Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins, 78, 3124–3130
Matsunaga, J., Barocchi, M. A., Croda, J., Young, T. A., Sanchez, Y., Siqueira, I., Bolin, C. A., Reis, M. G., Riley, L. W., Haake, D. A., and Ko, A. I. (2003) Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily. Mol. Microbiol. 49, 929-945
Pathirana, R. D., O'Brien-Simpson, N. M., Veith, P. D., Riley, P. F., and Reynolds, E. C. (2006) Characterization of proteinase-adhesin complexes of Porphyromonas gingivalis. Microbiology 152, 2381-2394
Patti, J. M., Allen, B. L., McGavin, M. J., and Hook, M. (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48, 585-617
Rajini, B., Shridas, P., Sundari, C. S., Muralidhar, D., Chandani, S., Thomas, F., and Sharma, Y. (2001) Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold. J. Biol. Chem. 276, 38464-38471
Ristow, P., Bourhy, P., da Cruz McBride, F. W., Figueira, C. P., Huerre, M., Ave, P., Girons, I. S., Ko, A. I., and Picardeau, M. (2007) The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog. 3, e97
Sharma, Y., Rao, C. M., Rao, S. C., Krishna, A. G., Somasundaram, T., and Balasubramanian, D. (1989) Calcium ion binding to crystallins: the presence of the EF-hand motif in δ-crystallin that aids in calcium ion binding. J. Biol. Chem. 264, 20923-20927
Stevenson, B., Choy, H. A., Pinne, M., Rotondi, M. L., Miller, M. C., Demoll, E., Kraiczy, P., Cooley, A. E., Creamer, T. P., Suchard, M. A., Brissette, C. A., Verma, A., and Haake, D. A. (2007) Leptospira interrogans endostatin-like outer membrane proteins bind host fibronectin, laminin and regulators of complement. PLoS One 2, e1188
Stroh, C., Wang, H., Bash, R., Ashcroft, B., Nelson, J., Gruber, H., Lohr, D., Lindsay, S. M., and Hinterdorfer, P. (2004) Single-molecule recognition imaging microscopy. Proc. Natl. Acad. Sci. USA 101, 12503-12507
Takeda, K., Kaisho, T., and Akira, S. (2003) TLR signaling pathways. Annu. Rev. Immunol. 21, 335-376
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680
Tung, J. Y., Yang, C. W., Chou, S. W., Lin, C. C., and Sun, Y. J. (2010) Calcium binds to LipL32, a lipoprotein from pathogenic Leptospira, and modulates fibronectin binding. J. Biol. Chem. 285, 3245-3252
Vivian, J. P., Beddoe, T., McAlister, A. D., Wilce, M. C., Zaker-Tabrizi, L., Troy, S., Byres, E., Hoke, D. E., Cullen, P. A., Lo, M., Murray, G. L., Adler, B., and Rossjohn, J. (2009) Crystal structure of LipL32, the most abundant surface protein of pathogenic Leptospira spp. J. Mol. Biol. 387, 1229-1238
Wang, H., Bash, R., Yodh, J. G., Hager, G. L., Lohr, D., and Lindsay, S. M. (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys. J. 83, 3619-3625
Werts, C., Tapping, R. I., Mathison, J. C., Chuang, T. H., Kravchenko, V., Saint Girons, I., Haake, D. A., Godowski, P. J., Hayashi, F., Ozinsky, A., Underhill, D. M., Kirschning, C. J., Wagner, H., Aderem, A., Tobias, P. S., and Ulevitch, R. J. (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2, 346-352
Yang, C. W., Wu, M. S., Pan, M. J., Hong, J. J., Yu, C. C., Vandewalle, A., Huang, C.C. (2000) Leptospira outer membrane protein activates NF-κB and downstream genes expressed in medullary thick ascending limb cells. J. Am. Soc. Nephrol. 11, 2017-26.
Yang, C. W., Wu, M. S., and Pan, M. J. (2001) Leptospirosis renal disease. Nephrol. Dial. Transplant. 16, 73-77
Yang, C. W., Wu, M. S., Pan, M. J., Hsieh, W. J., Vandewalle, A., and Huang, C. C. (2002) The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells. J. Am. Soc. Nephrol. 13, 2037-2045
Yang, C. W., Hung, C. C., Wu, M. S., Tian, Y. C., Chang, C. T., Pan, M. J., and Vandewalle, A. (2006) Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int. 69, 815-822
Yang, C. W. (2007) Leptospirosis renal disease: understanding the initiation by Toll-like receptors. Kidney Int. 72, 918-925