簡易檢索 / 詳目顯示

研究生: 蔡純怡
Tsai, Chun-I
論文名稱: 矽化鈷及矽鍺化鈷奈米結構之合成、結構鑑定及特性之研究
Cobalt Silicide and Cobalt Germanosilicde Nanostructures: Synthesis, Characterization, and Properties
指導教授: 陳力俊
Chen, Lih-Juann
口試委員: 吳文偉
鄭晃忠
李勝偉
許薰丰
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 107
中文關鍵詞: cobalt silicidenaowires
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • One dimensional metal silicide nanostructures have attracted much attention for their potential applications in electronic and spintronic nanodevices. In the present work, synthesis and characterizations of cobalt silicide and cobalt germanosilicide nanostructures have been investigated. In addition, the physical properties, including electrical, magnetic, and field emission properties, of the nanostructures were examined.
    Cobalt silicide nanostructures have been synthesized by a spontaneous chemical vapor transport and reaction method. The temperature and the vapor flow rate were shown to critically influence the growth of nanostructures. The effects of nanowires (NWs) growth by two main parameters were discussed. Various phases (CoSi, Co2Si) and morphologies, such as single-stem NWs, three-dimensional (3D) nanowire networks, and aloe-like NWs, have been synthesized. Very low turn-on field (1.42 V/□m) and good conductance in field-emission and electrical property measurements indicate that CoSi NWs are potentially useful for electronics.
    The effects of partial substitution of Ge for Si in cobalt germanosilicde (CoSi1-xGex and Co2Si1-xGex) NWs on the electrical transport, magnetic properties and magnetoresistance (MR) have been investigated. Cobalt germanosilicide NWs were synthesized by a spontaneous chemical vapor transport (CVT) growth method. The Ge concentration can be selectively controlled from 0-15% and 0-50% for CoSi1-xGex and Co2Si1-xGex NWs, respectively, by varying the reaction temperature. Electrical measurements showed that the resistivities of CoSi1-xGex NWs are 90, 60, 30, and 23 □Ω-cm for x = 0, 0.01, 0.05 and 0.15, respectively. Therefore, the electrical resistivity of CoSi1-xGex NWs was found to decrease significantly with an increasing Ge concentration which is believed to be a result of the band gap narrowing. On the other hand, the Co2Si1-xGex NWs exhibited ferromagnetism at 300 K, which is attributed to the uncoordinated Co atoms on the NW surface and spin glass behavior at low temperature, which is induced by the Co2Ge compound. The highest MR response of Co2Si1-xGex NWs occurred at x = 0.5, where a MR ratio of 11.7% can be obtained at 25 K with a magnetic field of 8 T. The enhanced physical properties of cobalt germanosilcide NWs with Ge substitution will lead to promising application in the fabrication of nanodevices, including spintronics and serving as the gate and interconnect material.

    一維金屬矽化物之奈米結構由於在奈米電子元件及自旋電子元件的應用中深具潛力,近年來,受到學界矚目及廣泛的被討論。本研究中,以合成矽化鈷及矽鍺化鈷之奈米結構為主題,並針對其奈米結構作分析鑑定與成長機制的探討,以及進行材料之電性、磁性和場發射等物理特性的量測與奈米元件之製作。
    本研究利用化學氣相傳輸法合成矽化鈷奈米結構,在此合成方法中,反應溫度及反應氣體流量為影響奈米結構成長的兩個重要因素。除了深入探討此兩變因對生成奈米結構具體的影響外,利用調控此二成長變因,成功合成出多元矽化鈷奈米結構,包含: 高密度奈米線(CoSi、Co2Si)、三維奈米網狀結構(CoSi)及奈米蘆薈花(Co2Si)。從場發射性質的量測結果,矽化鈷奈米結構擁有低啟動電場及低臨界值電壓,其中以高密度奈米線結構的表現為最佳。電性量測的結果顯示,矽化鈷奈米線的電阻率優於其塊狀材料,且電阻率隨著奈米線的尺寸減小而下降。
    進一步將鍺元素參雜至矽化鈷奈米線中,並探討在矽鍺化鈷奈米線中鍺濃度對於電性、磁性及磁阻變化的影響。在CoSi1-xGex奈米線中,鍺取代矽原子位置將縮小材料帶狀間隙距離,使得CoSi1-xGex奈米線在電性的表現有所提升。另一方面,磁性量測結果觀察到Co2Si1-xGex奈米線擁有室溫鐵磁與低溫自旋玻璃特性,室溫鐵磁性來自於表面未鍵結鈷原子,而自旋玻璃性質來自於奈米線中鍺化鈷化合物。此磁特性使Co2Si1-xGex奈米線擁有高磁阻變化,顯示此材料在奈米自旋電子元件中有潛在的應用性。


    Contents I Acknowledgement IV Abstract VI Chapter 1 Introduction 1.1 Nanotechnology 1 1.2 One-Dimensional Nanostructures 3 1.3 The Strategies for Achieving Nanowires and Growth Mechanism 4 1.3.1 Vapor-Liquid-Solid Nanowire Growth Method 5 1.3.2 Vapor-Solid Growth Mechanism 7 1.3.3 Chemical Vapor Transport Method 8 1.4 Metal Silicides 9 1.4.1 Silicide Nanowires 10 1.4.2 Cobalt Silicide 11 1.4.3 Cobalt Germanosilicide 13 1.5 Spintronic 15 1.5.1 Magnetoresistance 15 Chapter 2 Experimental Procedures 2.1 The Synthesis of Cobalt Silicide and Cobalt Germanosilcide Nanowires 17 2.1.2 Chemical Vapor Transport System 17 2.2 Scanning Electron Microscope Observation 18 2.3 X-ray Diffraction (XRD) Analysis 19 2.4 Transmission Electron Microscope (TEM) Observation 19 2.41 Sample Preparation for TEM Observation 19 2.42 TEM Observation 19 2.5 Field Emission Measurements 20 2.6 Electrical Transport Property Measurements 21 2.61 Device preparation for electrical measurements 21 2.62 Electron Beam Lithography 22 2.63 Focused Ion Beam System 23 2.64 Measurement of the I-V Characteristics 23 2.7 Quantum Design Physical Property Measurement System 24 2.8 Superconducting Quantum Interference Device (SQUID) 25 Chapter 3 Cobalt Silicide Nanostructures: Synthesis, Electron Transport and Field Emission Properties 3.1 Introduction 26 3.2 Experimental 28 3.3 Results and Discussion 30 Chapter 4 Direct Growth of CoSi1-xGex Nanowires: Enhancement of Electrical Properties with Ge Content 4.1 Introduction 46 4.2 Experimental 49 4.3 Results and Discussion 50 Chapter 5 High Magnetoresistance Induced by Spin-Glass Signature in Co2Si1-xGex Nanowires 5.1 Introduction 59 5.2 Experimental 62 5.3 Results and Discussion 64 Chapter 6 Summary and Conclusions 6.1 Cobalt Silicide Nanostructures: Synthesis, Electron Transport and Field Emission Properties 76 6.2 Direct Growth of CoSi1-xGex Nanowires: Enhancement of Electrical Transport with Ge Content 77 6.3 High Magnetoresistance Induced by Spin-Glass Signature in Co2Si1-xGex Nanowires 78 Chapter 7 Future Prospects 7.1 Schottky Contacted CoSi/ZnO Heterostructure Nanosensor 79 7.2 Electric-Field Control of Ferromagnetism in Co2Si1-xGex NWs 82 References 84

    Chapter 1
    [1] N. Taniguchi, “On the basic concept of nano-technolopy,” Jpn. Soc. Pre. Eng. (1974).
    [2] C. M. Lieber, “One-dimensional nanostructures: chemistry, physics & applications,” Solid State Commum, 1998, 107, 607-616.
    [3] M. Wilson, K. K. G. Smith, M. Simmons and B. Raguse, “Nanotechnology basic science emerging technologies,” (CRC, New York, 2002) 1-28.
    [4] J. D. Meindl, Q. Chen and J. A Davis, “Limits on silicon nanoelectronics for terascale integration,” Science, 2001, 293, 2044-2049.
    [5] R. Dagani, “Building for the bottom up,” Chem. Eng. News, 2000, 78, 27-32.
    [6] Z. L. Wang, “Characterizing the structure and properties of individual wire-like nanoentities,” Adv. Mater., 2000, 12, 1295-1298.
    [7] F. Cerrina, C. Marrian, “A path to nanolithography,” MRS Bull., 1996, 56-62.
    [8] J. M. Gibson, “Reading and writing with electron beams,” Phys. Today October, 1997, 50, 56-61.
    [9] Y. Wu and P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater., 2000, 12, 605-607.
    [10] Y. Wu, B. Messer and P. Yang, “Superconducting MgB2 nanowires,” Adv. Mater., 2001, 13, 1487-1489.
    [11] Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., 2001, 123, 3165-3166.
    [12] C. C. Chen and C. C. Yeh, “Large-scale catalytic synthesis of cystalline gallium nitride nanowires,” Adv. Mater., 2000, 12, 738-741.
    [13] M. H. Huang, Y. Wu, H. Feick, W. Weber and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., 2001, 13, 113-116.
    [14] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., 1964, 4, 89-90.
    [15] Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B, 1997, 15, 554-557.
    [16] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, 1998, 279, 208-211.
    [17] Y. Y. Wu and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater., 2000, 12, 605-607.
    [18] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc., 2001, 123, 2791-2798.
    [19] Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy,” Appl. Phys. Lett., 2002, 81, 5177-5179.
    [20] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, 2001, 409, 66-69.
    [21] Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, “Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires,” Chem. Phys. Lett., 2002, 357, 314-318.
    [22] X. C. Wu and Y. R. Tao, “Growth of CdS nanowires by physical vapor deposition,” J. Cryst. Growth, 2002, 242, 309-312.
    [23] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., 2001, 13, 113-116.
    [24] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett., 1998, 73, 3076-3078.
    [25] Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wang, “Nanobelts of semiconducting oxides,” Science, 2001, 291, 1947-1949.
    [26] H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y. Ding, Hang, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Comm., 1999, 109, 677-682.
    [27] X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, “Crystalline gallium oxide nanowires: intensive blue light emitters,” Chem. Phys. Lett., 2000, 328, 5-9.
    [28] Z.R. Dai, Z.W. Pan, Z.L. Wang, “Ultra-long single crystalline nanoribbons of tin oxide,” Solid State Comm., 1999, 118, 351-354.
    [29] Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, G.C. Xiong, S.Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation,” Chem. Phys. Lett., 1999, 303, 311-314.
    [30] X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, “Crystalline gallium oxide nanowires: intensive blue light emitters,” Chem. Phys. Lett., 2000, 328, 5-9.
    [31] H. Moissan, "The electric furnace," (English transl. by A. de Mouilpied) Edward Arnold, London, 1904.
    [32] A. L. Schmitt, J. M. Higgins, J. R. Szczech and S. Jin,” Synthesis and applications of metal silicide nanowires,”,J. Mater. Chem., 2010, 20, 223-235.
    [33] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, ”Magnetic properties of single-crystalline CoSi nanowires,” Nano Lett., 2007, 7, 1240-1245.
    [34] Y. Qu, J. Bai, L. Liao, R. Cheng, Y. C. Lin, Y. Huang, T. Guo and X. Duan, ”Synthesis and electric properties of dicobalt silicide nanobelts,” Chem. Commun., 2011, 47, 1255-1257.
    [35] C. I. Tsai, P. H. Yeh, C. Y. Wang, H. W. Wu, U. S. Chen, M. Y. Lu, W. W. Wu, L. J. Chen and Z. L. Wang, ” Cobalt silicide nanostructures: synthesis, electron transport and field emission properties,” Cryst. Growth Des., 2009, 9, 4514-4518.
    [36] K. Seo, S. Lee, H. Yoon, J. In, K. S. K. Varadwaj, Y. Jo, M. H. Jung, J. Kim and B.Kim, “Composition-tuned ConSi nanowires: location-selective simultaneous growth along temperature gradient,” ACS Nano, 2009, 3, 1145-1150.
    [37] K. Seo, H. Yoon, S. W. Ryu, S. Lee, Y. Jo, M. H. Jung, J. Kim, Y. K. Choi and B. Kim, ”Itinerant helimagnetic single-crystalline MnSi nanowires,” ACS Nano, 2010, 4, 2569-2576.
    [38] J. M. Higgins, R. Ding, J. P. Degrave and S. Jin, “Signature of helimagnetic ordering in single-crystal MnSi nanowires,” Nano Lett., 2010, 10, 1605-1610
    [39] A. L. Schmitt, J. M. Higgins, and S. Jin, “Chemical synthesis and magnetotransport of magnetic semiconducting of Fe1-xCoxSi alloy nanowires,” Nano Lett., 2008, 8, 810-815.
    [40] J. In, Kumar S. K. Varadwaj, K. Seo, S. Lee, ounghun Jo, M. H. Jung, J. Kim, and B. Kim, “Single-crystalling ferromagnetic Fe1-xCoxSi nanowires,” J Phys. Chem. C, 2008, 112, 4748-4752.
    [41] F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin, and Li Shi, “Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations,” Nano Lett., 2007, 7, 1649–1654.
    [42] S. W. Hung, P. H. Yeh, L. W. Chu, C. D. Chen, L. J. Chou, Y. J. Wu and L. J. Chen,” Direct growth of □-FeSi2 nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method,” J Mater. Chem., 2011, 21, 5704-5709.
    [43] Y. Song, A. L. Schmitt, and S. Jin, “Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,” Nano Lett., 2007, 7, 965–969.
    [44] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu and L. J. Chen, “Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties,” Appl. Phys. Lett., 2008, 93, 113109.
    [45] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen and L. J. Chen, “Free-standing single crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C, 2009, 113, 2286-2289.
    [46] C. M. Chang, Y. C. Chang, Y. A. Chung, C. Y. Lee and L. J. Chen, “Synthesis and properties of the low resistivity TiSi2 nanowires grown with TiF4 precursor”, J. Phys. Chem. C, 2009, 113, 17720–17723.
    [47] C. M. Chang, Y.C. Chang, C.Y. Lee, P. H. Yeh, W.F. Lee and L.J. Chen, “Synthesis and physical properties of Ti5Si4 nanobats,” J. Phys. Chem. C, 2009, 113, 9153-9156.
    [48] H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Growth of High-density titanium silicide nanowires in a single direction on a silicon surface,” Nano Lett., 2007, 7, 885-889.
    [49] Schmitt, A.L.; Bierman, M.J.; Schmeisser, D.; Himpsel, F.J.; Jin, S. “Synthesis and properties of single-crystal FeSi nanowires,” Nano Lett., 2006, 6, 1617-1621
    [50] Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 nanowires: a potential field emitter and interconnect,” Nano Lett., 2006, 6, 1637-1644.
    [51] L. J. Chen, “Silicide technology for integreted circuit” The Institution of Electrical Enguneers, London, U.K., 2004
    [52] Zhang, S. L.; Ostling, M., “Metal silicides in CMOS technology: past, present,
    and future trends,” Crit. ReV. Solid State Mater. Sci., 2003, 28, 1-130.
    [53] S. L. Zhang, and U. J. Smith, “Self-aligned silicides for ohmic contact in complementary metal-oxide-semiconductor technology: TiSi2, CoSi2, and NiSi,” Vac. Sci. Technol. A, 2004, 22, 1361-1370.
    [54] W. P. Maszara, “Fully silicided metal gates for high-performanc COMS technology,” J. Electrochem. Soc., 2005, 152, G550-554.
    [55] C. Fitz, M. Goldbach, A. Dupont, S.Schmidbauer, “Silicides as contact material for DRAM applications,” Microelectron. Eng., 2005, 82, 460-466.
    [56] A. H. M. Kamal, A. T. Obeidat, and T. Budri, “Suppressing boron penetration and cobalt silicide agglomeration in deep submicron p-channel metal–oxide–semiconductor devices,” J. Vac. Sci. Technol. B, 2002, 20, 173-179.
    [57] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature, 2004, 430, 61-65.
    [58] R. People, “Physics and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron, 2986, 22, 1696-1710.
    [59] F. Schaffler, “High-mobility Si and Ge structures,” Semicond. Sci. Technol., 1997, 12, 1515-1549.
    [60] D. J. Paul, “Silicon-germanium strained layer materials in microelectronics,” Adv. Mater., 1999, 11, 191-204.
    [61] O. P. Pchelyakov, Y. B. Bolkhovityanov, A. V. Dvurechenskiĭ, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtlander, “Silicon-germanium nanostructures with quantum dots: formation mechanisms and electrical properties,” Semiconductors, 2000, 34, 1229-2347.
    [62] S. H. Olsen, A. G. O’Neill, S. Chattopadhyay, K. S. S. Kwa, L. S. Driscoll, D, J. Norris, A. G. Cullis, D. J. Robbins, and J. Zhang, “Evolution of strained Si/SiGe material for high performance CMOS,” Semicond. Sci. Technol., 2004, 19, 707-714.
    [63] M. L. Lee, E. A. Fitzgerald, M. T. Matthew, T. Currie, and A. Lochtefeld, “Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., 2005, 97, 011101-1-27.
    [64] E. A. Fitzgerald, Y. H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1–x structures for III–V integration with Si and high mobility two-dimensional electron gases in Si,” J. Vac. Sci. Technol. B, 1992, 10, 1807-1819.
    [65] U. Konig, A. J. Boers, F. Schaffler, and E. Kasper, “Enhancement mode n-nhannel Si/SiGe MODFET with high intrinsic transconductance,” Electron. Lett., 1992, 28, 160-162.
    [66] T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and hole mobility enhancement in strained-Si MOSFET's on SiGe-on-insulator substrates fabricated by SIMOX technology,” IEEE Electron Device Lett., 2000, 21, 230-232.
    [67] M. L. Lee, and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1–xGex,” J. Appl. Phys., 2003, 94, 2590-2596.
    [68] C.H. Chen, Y.K. Fang, C.W. Yang, S.F. Ting, Y.S. Tsair, C.N. Chang, T.H. Hou, M.F. Wang, M.C. Yu, C.L. Lin, S.C. Chen, C.H. Yu and M.S. Liang. Solid State Electronics, 2002, 46, 597–599.
    [69] Y. K. Kuo, K. M. Sivakumar, S. J. Huang, and C. S. Lue,” Thermoelectric properties of the CoSi1-xGex alloys”, J. Appl. Phys., 2005, 98, 123510.
    [70] Y. Hao, F.J. Castano, C.A. Ross, B. Vogeli, M.E. Walsh, H.I. Smith,” Magnetization reversal in lithography patterned sub-200 nm Co particle arrays”, J. Appl. Phys.,2002, 91, 7989.

    Chapter 3
    [1] M. Law, J. Goldberger, and P. Yang, “Semiconductor nanowires and nanotubes,” Annu. Rev. Mater. Res., 2004, 34, 83-122.
    [2] W. Lu, and C. M. Lieber, “ Nanoelectronics from the bottom up,“ Nat. Mater., 2007, 6, 841-850.
    [3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 2003, 15, 353-389.
    [4] L, J, Chen, “Silicon nanowires: the key building block for future electronic devices,” J. Mater. Chem. 2007, 17, 4639-4643.
    [5] J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric gated diode of a single ZnO nanowire,” Adv. Mater., 2007, 19, 781-784.
    [6] L. Z. Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-from materials to nanodevices,” Adv. Mater. 2003, 15, 432-436.
    [7] C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and L. J. Chen, “Er-doped Silicon nanowires with 1.54 um light-emitting and enhanced electrical and field emission properties,“ Appl. Phy. Lett. 2007, 91, 093133-1-3.
    [8] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Silicon nanowires as solar cells and nanoelectronic power sources,“ Nature, 2007, 449, 885-889.
    [9] Y. Qin, X. Wang, and Z. L. Wang, “Microfibre–nanowire hybrid structure for energy scavenging,” Nature 2008, 451, 809-813.
    [10] K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, and K. N. Tu, “In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction,“ Nano Lett., 2007, 7, 2389-2394.
    [11] S. L. Zhang, and M. Ostling, “Metal silicides in CMOS technology: past, present, and future trends,“ Crit. Rev. Solid State Mater. Sci. 2003, 28, 1-129.
    [12] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “ Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 2004, 430, 61.
    [13] S. L. Zhang, and U. Smith, “Self-aligned silicides for Ohmic contacts in complementary metal–oxide–semiconductor technology: TiSi2, CoSi2, and NiSi,” J. Vac. Sci. Technol. A, 2004, 22, 1361-1370.
    [14] J. D. Lee, S. H. Jin, B. C. Shim, and B. G. Park, ”A formation of cobalt silicide on silicon field emitter arrays by electrical stress,” IEEE Elec. Dev. Lett., 2001, 22, 173-175.
    [15] Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, ”TaSi2 nanowires: a potential field emitter and interconnect,” Nano Lett., 2006, 6, 1637-1644.
    [16] B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett., 2005, 86, 243103-243105.
    [17] C. J. Kim, K. Kang, Y. S. Woo, K. G. Ryu, H. Moon, J. M. Kim, D. S. Zang, and M. H. Jo, “Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties,” Adv. Mater., 2007, 19, 3637-3642.
    [18] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties,” Appl. Phys. Lett., 2008, 93, 113109-1-3.
    [19] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, “Free-standing single crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C, 2009, 113, 2286-2289.
    [20] K. Kang, S. Kim, C. J. Kim, and M. H. Jo, ”The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers,” Nano Lett., 2008, 8, 431-436.
    [21] H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “ Growth of high-density titanium silicide nanowires in a single direction on a silicon surface,” Nano Lett., 2007, 7, 885-889.
    [22] A. L. Schmitt, L. Zhu, D. Schmeiaer, F. J. Himpsel, and S. Jin, “Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor,” J. Phys. Chem. B, 2006, 37, 18142-18146.
    [23] A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel, and S. Jin, “Synthesis and properties of single-crystal FeSi nanowires,” Nano Lett., 2006, 6, 1617-1621.
    [24] A. L. Schmitt, J. M. Higgins, and S. Jin, “Chemical synthesis and magnetotransport of magnetic semiconducting Fe1-xCoxSi alloy nanowires,“ Nano. Lett., 2008, 8, 810-815.
    [25] L. Ouyang, E. S. Thrall, M. M. Deshmukn, and H. Park, “Vapor phase synthesis and characterization of ε-FeSi nanowires,” Adv. Mater., 2006, 18, 1437-1440.
    [26] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim, and B. Kim, “ Magnetic properties of single-crystalline CoSi nanowires,” Nano Lett., 2007, 7, 1240-1245.
    [27] J. R. Szczech, A. L. Schmitt, M. J. Bierman, and S. Jin, ”Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport, “Chem. Mater., 2007, 19, 3238-3243.
    [28] Y. Song, A. L. Schmitt, and S. Jin, “Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,” Nano Lett., 2007, 7, 965-969.
    [29] K. S. K.Varadwaj, K. Seo, J. In, P. Mohanty, J. Park, and B. Kim, “Phase controlled growth of metastable Fe5Si3 nanowires by a vapor transport method,” J. Am. Chem. Soc., 2007, 129, 8594-8599.
    [30] K. Seo, K. S. K.Varadwaj, D. Cha, J. In, J. Kim, J. Park, and B. Kim, “ Synthesis and electrical properties of single crystalline CrSi2 nanowires,” J. Phys. Chem. C, 2007, 111, 9072-9076.
    [31] K. Seo, S. Lee, H. Yoon, J. In, K. S. K. Varadwaj, Y. Jo, M. H. Jung, J. Kim, and B. Kim, “Composition-tuned ConSi nanowires: location-selective simultaneous growth along temperature gradient,” ACS Nano, 2009, 3, 1145-1150.
    [32] J. Du, P. Du, P. Hao, Y. Huang, Z. Ren, G. Han, W. Weng, and G. Zhao, “Growth mechanism of TiSi nanopins on Ti5Si3 by atmospheric pressure chemical vapor deposition,” J. Phys. Chem. C, 2007, 111, 10814-10817.
    [33] D. K. Lim, O. Kubo, Y. Shingaya, T. Nakayama, Y. H. Kim, J. Y. Lee, M. Aono, H. Lee, D. Lee, and S. Kim, “ Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope,” Appl. Phy. Lett., 2008, 92, 203114-1-3.

    Chapter 4
    [1] X. Duan, Y. Huang, Y. Cui, J. Wang and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, 2001, 409, 66-69.
    [2] Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, 2006, 312, 242-246.
    [3] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi and P. Yang, “Single-crystal gallium nitride nanotubes,” Nature, 2003, 422, 599-602.
    [4] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. M. Lieber, “Ge/Si nanowire heterostructures as highperformance field-effect transistors,” Nature, 2006, 441, 489-493.
    [5] C. Y. Wen, M. C. Reuter, J. Bruley, J. Tersoff, Kodambaka, E. A. Stach, and F. M. Ross, “Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowries,” Science, 2009, 326, 1247-1250.
    [6] Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett., 2002, 2, 83-86.
    [7] T. E. Clark, P. Nimmatoori, K. K. Lew, Li. Pan, J. M. Rewing, and E. C. Dickey, “Diameter dependent growth rate and interface abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires,” Nano Lett., 2008, 8, 1246-1252.
    [8] J. H. He, C. Y. Chen, C. H. Ho, C. W. Wang, M. J. Chen, and L. J. Chen, “Growth and structural characterization of SiGe nanorings,” J. Phys. Chem. C, 2010, 114, 5727–5731.
    [9] Y. K. Kuo, K. M. Sivakumar, S. J. Huang, and C. S. Lue, “Thermoelectric properties of the CoSi1-xGex alloys,” J. Appl. Phys., 2005, 98, 123510.
    [10] A. L. Schmitt, J. M. Higgins, J. R. Szczech and S. Jin, “Synthesis and applications of metal silicide nanowires,” J. Mater. Chem., 2010, 20, 223-235.
    [11] K. Seo, S. Lee, Y. Jom, M. H. Jung, J. Kim, D. G. Ghurchill and B. Kim, “Room temperature ferromagnetism in single-crystalline Fe5Si3 nanowires,” J Phys. Chem. C, 2009, 13, 6902-6905.
    [12] K. Seo, N. Bagkar, S. Kim, J. In, H. Yoon, Y. Jo and B. Kim, “Diffusion-driven crystal structure transformation: tynthesis of heusler alloy Fe3Si nanowires,” Nano Lett., 2010, 10, 3643-3647.
    [13] S. W. Hung, P. H. Yeh, L. W. Chu, C. D. Chen, L. J. Chou, Y. J. Wu and L. J. Chen, “Direct growth of □-FeSi2 nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method,” J Mater. Chem., 2011, 21, 5704-5709.
    [14] K. Seo, H. Yoon, S. W. Ryu, S. Lee, Y. Jo, M. H. Jung, J. Kim, Y. K. Choi and B. Kim, “Itinerant helimagnetic single-crystalline MnSi nanowires,” ACS Nano, 2010, 4, 2569-2576.
    [15] J. M. Higgins, R. Ding, J. P. Degrave and S. Jin, “Signature of helimagnetic ordering in single-crystal MnSi nanowires,” Nano Lett., 2010, 10, 1605-1610.
    [16] J. M. Higgins, A. L. Schmitt, I. A. Guzei and S. Jin, “Higher manganese silicide nanowires of Nowotny chimney ladder phase,” J. Am. Chem. Soc., 2008, 130, 16086-16094.
    [17] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Magnetic properties of single-crystalline CoSi nanowires,” Nano Lett., 2007, 7, 1240-1245.
    [18] Y. Qu, J. Bai, L. Liao, R. Cheng, Y. C. Lin, Y. Huang, T. Guo and X. Duan, “Synthesis and electric properties of dicobalt silicide nanobelts,” Chem. Commun., 2011, 47, 1255-1257.
    [19] C. I. Tsai, P. H. Yeh, C. Y. Wang, H. W. Wu, U. S. Chen, M. Y. Lu, W. W. Wu, L. J. Chen and Z. L. Wang, “Cobalt silicide nanostructures: synthesis, electron transport and field emission properties,” Cryst. Growth Des., 2009, 9, 4514-4518.
    [20] K. Seo, S. Lee, H. Yoon, J. In, K. S. K. Varadwaj, Y. Jo, M. H. Jung, J. Kim and B.Kim, “Composition-tuned ConSi nanowires: location-selective simultaneous growth along temperature gradient,” ACS Nano, 2009, 3, 1145-1150.
    [21] F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin, and Li Shi, “Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations,” Nano Lett., 2007, 7, 1649–1654.
    [22] C. L. Hsin, S. Y. Yu and W. W. Wu, “Cobalt silicide nanocables grown on Co films: synthesis and physical properties,” Nanotechnology, 2010, 21, 485602.
    [23] a) Y. Song, A. L. Schmitt, and S. Jin, “Ultralong single-crystal metallic Ni2Si nanowires with low resistivity,” Nano Lett., 2007, 7, 965–969. b) C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu and L. J. Chen, “Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties,” Appl. Phys. Lett., 2008, 93, 113109. c) C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen and L. J. Chen, “Free-standing single crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C, 2009, 113, 2286-2289.
    [24] a) C. M. Chang, Y. C. Chang, Y. A. Chung, C. Y. Lee and L. J. Chen, “Synthesis and properties of the low resistivity TiSi2 nanowires grown with TiF4 precursor,” J. Phys. Chem. C, 2009, 113, 17720–17723. b) C. M. Chang, Y.C. Chang, C.Y. Lee, P. H. Yeh, W.F. Lee and L.J. Chen, “Synthesis and physical properties of Ti5Si4 nanobats,” J. Phys. Chem. C, 2009, 113, 9153-9156.
    [25] J. Tang, C. Y. Wang, F. Xiu, A. Hong, S. Chen, M. Wang, C. Zeng, H. J. Yang, H. Y. Tuan, C. J. Tsai, L. J. Chen and K. L. Wang, “Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors,” Nanotechnology, 2010, 21, 505704 (7pp).
    [26] H. Yoon, T. Kang, J. M. Lee, S.-I. Kim, K. Seo, J. Kim, W. I. Park and B. Kim, "Epitaxially integrating ferromagnetic Fe1.3Ge nanowire arrays on few-layer grapheme," J. Phys. Chem. Lett.,2011, 2, 956-960.
    [27] H. Yoon, A. T. Lee, E. Choi, K. Seo, N. Bagkar, J. Cho, K. J. Chang and B. Kim, "Structure-induced ferromagnetic stabilization in freestanding hexagonal Fe1.3Ge NWs,” J. Am. Chem. Soc., 2010, 49, 17447-17451.
    [28] H. Yoon, K. Seo, N. Bagkar, J. In, J. Park, J. Kim, and B. Kim, “Vertical epitaxial Co5Ge7 nanowire and nanobelt arrays on a thin graphitic layer for flexible field emission display,” Adv. Mater., 2009, 21, 4979-4982.
    [29] N. S. Dellas, S. Minassian, J. M. Redwing and S. E. Mohney, “Formation of nickel germanide contacts to Ge nanowires,” Appl. Phys. Lett., 2010, 97, 263116.
    [30] T. Burchhart, A. Lugstein, Y. J. Hyun, G. Hochleitner and E. Bertagnolli, “Atomic scale alignment of copper-germanide contacts for Ge nanowire metal oxide field effect transistors,” Nano Lett., 2009, 9, 3739-3742.
    [31] Jeremy M. Higgins, Penelope Carmichael, Andrew L. Schmitt, Stephen Lee, John P. Degrave, and Song Jin, “Mechanistic Investigation of the Growth of Fe1−xCoxSi (0≤x ≤1) and Fe5(Si1−yGey)3 (0≤ y ≤0.33) Ternary Alloy Nanowires,” ACS Nano, 2011, 5, 3268-3277.

    Chapter 5
    [1] X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. Madhukar Reddy, S. D. Flexner, C. J. Palmstrom and P. A. Crowell, “Electrical detection of spin transport in lateral ferromagnet semiconductor devices,” Nat. Phys., 2007, 3, 197-202.
    [2] Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh, and M. Miyao, “Electrical in silicon through an Fe3Si/Si Schottky tunnel barrier,” Appl. Phys. Lett., 2009, 94, 182105-182105-3.
    [3] C. Chappert, A. Fert and F. Nguyen Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater., 2007, 6, 813-823.
    [4] Y. C. Lin, Y. Chen, A. Shailos and Y. Huang, “Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts,” Nano Lett., 2010, 10, 2281-2287.
    [5] W. Liang, B. D. Yuhas and P. Yang, “Magnetotransport in Co-Doped ZnO Nanowires,” Nano Lett., 2009, 9, 892-896.
    [6] K. Seo, S. Lee, Y. Jom, M. H. Jung, J. Kim, D. G. Ghurchill and B. Kim, “Room temperature ferromagnetism in single-crystalline Fe5Si3 nanowires,” J Phys. Chem. C, 2009, 13, 6902-6905.
    [7] K. Seo, N. Bagkar, S. Kim, J. In, H. Yoon, Y. Jo and B. Kim, “Diffusion-driven crystal structure transformation: tynthesis of heusler alloy Fe3Si nanowires,” Nano Lett., 2010, 10, 3643-3647.
    [8] S. W. Hung, P. H. Yeh, L. W. Chu, C. D. Chen, L. J. Chou, Y. J. Wu and L. J. Chen, “Direct growth of □-FeSi2 nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method,” J Mater. Chem., 2011, 21, 5704-5709.
    [9] K. Seo, H. Yoon, S. W. Ryu, S. Lee, Y. Jo, M. H. Jung, J. Kim, Y. K. Choi and B. Kim, “Itinerant helimagnetic single-crystalline MnSi nanowires,” ACS Nano, 2010, 4, 2569-2576.
    [10] J. M. Higgins, R. Ding, J. P. Degrave and S. Jin, “Signature of helimagnetic ordering in single-crystal MnSi nanowires,” Nano Lett., 2010, 10, 1605-1610.
    [11] J. M. Higgins, A. L. Schmitt, I. A. Guzei and S. Jin, “Higher manganese silicide nanowires of Nowotny chimney ladder phase,” J. Am. Chem. Soc., 2008, 130, 16086-16094.
    [12] A. L. Schmitt, J. M. Higgins, and S. Jin, “Chemical synthesis and magnetotransport of magnetic semiconducting of Fe1-xCoxSi alloy nanowires,” Nano Lett., 2008, 8, 810-815.
    [13] J. In, Kumar S. K. Varadwaj, K. Seo, S. Lee, ounghun Jo, M. H. Jung, J. Kim, and B. Kim, “Single-crystalling ferromagnetic Fe1-xCoxSi nanowires,” J Phys. Chem. C, 2008, 112, 4748-4752.
    [14] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Magnetic properties of single-crystalline CoSi nanowires,” Nano Lett., 2007, 7, 1240-1245.
    [15] Y. Qu, J. Bai, L. Liao, R. Cheng, Y. C. Lin, Y. Huang, T. Guo and X. Duan, “Synthesis and electric properties of dicobalt silicide nanobelts,” Chem. Commun., 2011, 47, 1255-1257.
    [16] K. Seo, S. Lee, H. Yoon, J. In, K. S. K. Varadwaj, Y. Jo, M. H. Jung, J. Kim and B.Kim, “Composition-tuned ConSi nanowires: location-selective simultaneous growth along temperature gradient,” ACS Nano, 2009, 3, 1145-1150.
    [17] G. F. Zhou and H. Bakker, “Spin-glass behavior of amorphous Co2Ge synthesized by mechanical milling,” Phys. Rev. Lett., 1994, 72, 2290-2293.

    Chapter 7
    [1] P. H. Yeh, Z. Li and Z. L. Wang, “Schottky-gated probe-free ZnO nanowire biosensor,” Adv. Mater., 2009, 21, 4975-4978.
    [2] T. Y. Wei, P. H. Yeh, S. Y. Lu and Z. L. Wang, “Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor,” J. Am. Chem. Soc., 2009, 131, 17690–17695.
    [3] T. Y. Wei, C. T. Huang, B. J. Hansen, Y. F. Lin, L. J. Chen, S. Y. Lu and Z. L. Wang, “Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors,” Appl. Phys. Lett., 2010, 96, 013508.
    [4] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno and K. Ohtani, “Electric-field control of ferromagnetism,” Nature, 2000, 408, 944-946.
    [5] F. Xiu, Y. Wang, J. Kim, A. Hong, J. Tang, A. P. Jacob, J. Zou and Kang L. Wang, “Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots,” Nature Mater., 2010, 9, 337-344.
    [6] J. Chen, K. L. Wang and K. Galatsisa, “Electrical field control magnetic phase transition in nanostructured MnxGe1−x,” Appl. Phys. Lett., 2007, 90, 012501-1-3.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE