簡易檢索 / 詳目顯示

研究生: 白乙辰
Bai, Yi-Chen
論文名稱: 結合非病毒基因工程改造幹細胞與三維生物列印支架用以促進傷口癒合
Integration of Nonviral Genetically-Engineered Stem Cells and 3D Bioprinted Scaffolds for Promoting Wound Healing
指導教授: 張建文
Chang, Chien-Wen
口試委員: 張晃猷
Chang, Hwan-You
江啟勳
Chiang, Chi-Shiun
劉倬昊
Liu, Zhuo-Hao
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 三維生物列印傷口癒合非病毒基因傳遞血管內皮生長因子人類間質幹細胞
外文關鍵詞: 3D bioprinting, Wound healing, Non-viral gene delivery, VEGF, Stem cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,人類間質幹細胞(human mesenchymal stem cells, hMSCs)在傷口癒合與皮膚組織再生之應用日益受到關注。hMSCs可以分泌各種生長因子以利傷口癒合,例如:有助於刺激傷口床血管新生之血管內皮生長因子(VEGF)。然而,僅由hMSCs所分泌之VEGF仍不足以增進傷口修復。為此,本研究沿用實驗室所開發之高效率磁性複合奈米基因載體(PNT),並以磁轉染程序針對hMSCs進行基因工程(VEGFhMSCs),突破傳統非病毒載體基因傳遞效率不佳之疑慮,作為一安全且有效率之基因遞送平台以加速傷口修復。此外,為解決臨床上移植MSCs之細胞存活度不佳等問題,我們欲結合細胞治療與敷料作為促進傷口修復之策略,利用三維生物列印技術改善二維細胞敷料其細胞分散性低、無法有效獲得養分與代謝而影響細胞活性及遷徙能力之缺點,提供一良好平台遞送細胞。
      本研究利用具可列印性且具光交聯性質之材料:GelMA (gelatin methacrylate)與GCMA (glycol chitosan methacrylate),以及三維生物列印(Three dimensional bioprinting, 3D bioprinting)之技術包覆非病毒基因工程改造後之VEGFhMSCs,製備三維結構之幹細胞水凝膠敷料。將Gelatin與Glycol chitosan經由甲基丙烯酸化後得到GelMA與GCMA,可透過 1H-NMR測定其接枝率分別為75.5%和42.5%。於405nm之光照射3-5分鐘,以製備GelMA/GCMA水凝膠。透過掃描式電子顯微鏡觀察水凝膠的孔洞大小,發現水凝膠的吸水倍率與GelMA/GCMA水凝膠的濃度成反比。與此同時,利用本實驗室所開發的奈米基因載體製備VEGFhMSCs。與市售Lipofectamine 2000相比,由PNT磁轉染的VEGFhMSC中擁有較高的VEGF表達量。進一步探討幹細胞與GelMA/GCMA水凝膠的材料成分比例之間的關係。透過調整水凝膠高分子材料組成分之濃度,可調控水凝膠的結構與孔洞大小,進而提高包覆於水凝膠內之VEGFhMSCs transgene的表達,改善因剪切作用而降低轉染效率之限制,使轉染後細胞具備VEGF表達量最佳化。由水凝膠包覆的VEGFhMSC所分泌的VEGF protein可以在體外有效地提高HUVEC的細胞增生。最後,由體內全皮層受傷模式實驗的結果證實,以此敷料治療之組別,因VEGFhMSCs所分泌之VEGF protein能夠縮短傷口中細胞分裂的週期、刺激真皮層細胞增生及自我更新,達到促進傷口癒合之療效。


      Applying human mesenchymal stem cells (hMSCs) on wound healing and skin regeneration have received increasing attention in recent years. hMSCs can secrete various growth factors such as vascular endothelial growth factor (VEGF) which could contribute to neovascular regeneration. However, low viability of the transplanted hMSCs in the inflammatory microenvironment has significantly limited their beneficial effects on wound healing. With the advance of recent 3D printing techniques, it is possible to design biomimicking scaffolds capable of improving survival, proliferation and migration of the transplanted cells. The aim of this study is to develop photocrosslinkable gelatin methacrylate (GelMA)/glycol chitosan methacrylate (GCMA) 3D-bioprinted scaffolds incorporated with VEGF-expressing hMSCs (VEGFhMSCs) as a novel stem cell-based dressing for wound healing. GelMA and GCMA were synthesized and characterized by 1H-NMR. Degree of methacrylation of the GelMA and GCMA were 75.5 % and 42.5 % respectively. GelMA/GCMA hydrogels were fabricated by photo-crosslinking at 405 nm for 3-5 minutes. Porosity of these hydrogels were characterized by scanning electron microscope (SEM). In accordance to SEM results, the swelling ratios of hydrogels were inversely proportional to the content of GelMA/GCMA hydrogels. In parallel, we have developed a magnetic polymer/iron oxide nanocomplex (PNT) as an efficient and non-toxic gene delivery tool for human stem cells. VEGFhMSCs were successfully constructed by PNT-mediated VEGF gene delivery. Much higher VEGF expression level was detected from the hMSCs transfected by PNT compared to Lipofectamine 2000 or polyethylenimine. Inter-talks between stem cells and material properties/composition of the hydrogels were further studied. Higher degree of cell spreading and proliferation were observed from hydrogels containing more GelMA. VEGF secreted from the 3D-encapsulated VEGFhMSCs could effectively enhance the proliferation of human umbilical vein endothelial cells (HUVECs) in vitro. Most importantly, the preliminary in vivo results of subcutaneous transplantation model suggested that the secreted VEGF protein from encapsulated VEGFhMSCs thickens the epidermis, promotes the cell proliferation of dermis that enhances the overall wound healing process.

    摘要 3 Abstract 5 目錄 7 圖目錄 11 表目錄 14 第一章、緒論 15 1.1 前言 15 1.2 研究動機與目標 16 第二章、文獻回顧 19 2.1 全皮層皮膚創傷 19 2.1.1 全皮層創傷修復 19 2.1.2 常見皮膚創傷之治療 23 2.1.3 人類間質幹細胞於皮膚創傷修復策略 26 2.2 基因載體 28 2.2.1 基因傳遞概述 28 2.2.2 病毒基因載體 29 2.2.3 非病毒基因載體 30 2.2.4 基因治療與血管新生 34 2.3 三維生物列印 38 2.3.1 二維與三維生物支架之比較 38 2.3.2 三維生物列印技術之種類 39 2.3.3 應用於擠壓型三維生物列印之生物墨水 43 第三章、實驗材料與方法 47 3.1 實驗材料 47 3.2生物墨水之製備與分析方法 48 3.2.1 Methacrylated Glycol Chitosan (GCMA)的製備 48 3.2.2 Methacrylated gelatin (GelMA)的製備 49 3.2.3 核磁共振光譜分析 49 3.2.4水凝膠之製備 49 3.2.5水凝膠橫切面之結構分析 50 3.2.6水凝膠之Swelling ratio測定與分析 50 3.3生物墨水之體外細胞實驗檢測 50 3.3.1細胞培養與繼代 50 3.3.2細胞於水凝膠內之活性檢測 51 3.4載體製備與純化 52 3.4.1 SPIONs合成與純化 52 3.4.2 γPGA-SPIONs製備與純化 52 3.4.3 PAE與PNT polyplexes載體製備 53 3.5 VEGF製備及鑑定 53 3.5.1 VEGF plasmid DNA的純化 53 3.5.2膠體電泳分析VEGF plasmid DNA 53 3.6 PNT polyplexes於hMSCs之磁轉染與分析 54 3.6.1基因傳遞與蛋白質定量 54 3.6.2磁轉染對細胞毒性之測試 54 3.7結合磁轉染細胞與生物墨水之分析 55 3.7.1結合磁轉染細胞與生物墨水之細胞活性檢測 55 3.7.2體外內皮細胞增生分析 55 3.7.3即時定量聚合酶連鎖反應 55 3.8三維生物敷料於體內實驗測試 56 3.8.1三維生物列印系統 56 3.8.2全皮層傷口動物模式之建立與治療 56 3.8.3犧牲與取樣 57 3.8.4病理切片與染色 57 3.9數據分析 58 第四章、實驗結果與討論 59 第一部分、材料的合成與鑑定 59 4.1 GelMA與GCMA材料的製備與鑑定 59 4.2 GelMA與GCMA水凝膠的製備與鑑定 61 第二部分、探討hMSCs與生物墨水成分之最佳化條件 63 4.3 GelMA的成分比例與hMSCs的交互關係 63 4.4探討水凝膠所使用的培養基成分與包覆於水凝膠內部hMSCs之關係 65 4.5探討於不同成分比例之水凝膠中hMSCs的細胞活性 67 第三部分、探討基因改質hMSCs與墨水材料之交互作用 68 4.6磁轉染於hMSCs之探討 68 4.6.1 VEGF plasmid DNA的純化與鑑定 68 4.6.2磁轉染於hMSCs之參數最佳化 69 4.7探討墨水材料與轉染後hMSCs之關係 72 4.7.1探討2D與3D細胞培養對VEGF transgene表達之影響 72 4.7.2探討VEGFhMSCs包覆於不同比例的GelMA/GCMA水凝膠中的細胞活性 73 4.7.3探討於不同材料的水凝膠中VEGFhMSCs之VEGF transgene的表達 75 4.7.4探討VEGFhMSCs於2D及3D培養下的VEGF基因表現量 76 4.7.5以HUVEC的增生率測定VEGFhMSCs所分泌的VEGF protein功能性 77 第四部分、結合VEGFhMSCs與水凝膠敷料應用於傷口癒合 78 4.8結合VEGFhMSCs與水膠敷料於傷口癒合應用之結果 78 4.8.1外部傷口的縮合 78 4.8.2傷口內部組織的H&E及Masson trichrome染色 80 4.8.3傷口內部組織的Human nuclei與CD31抗體染色 83 第五章、結論 86 參考文獻 87

    1. Montagna, W., The structure and function of skin. 2012: Elsevier.
    2. Rousso, J.J. and M. Bassiri-Tehrani, Skin Anatomy and Physiology. Sataloff's Comprehensive Textbook of Otolaryngology: Head & Neck Surgery: Facial Plastic and Reconstructive Surgery, 2015. 3: p. 1.
    3. McMullen, R.L., Antioxidants and the Skin, ed. A.C.K. Brian W. Budzynski. 2013, USA: Allured Business Media.
    4. Clark, R.A., K. Ghosh, and M.G. Tonnesen, Tissue engineering for cutaneous wounds. Journal of Investigative Dermatology, 2007. 127(5): p. 1018-1029.
    5. Ducheyne, P., et al., Comprehensive Biomaterials II. 6.20 Skin Tissue Engineering. 2017: Elsevier. 334–382.
    6. Janis, J. and C. Attinger, The basic science of wound healing. Plastic and reconstructive surgery, 2006. 117(7 Suppl): p. 12S-34S.
    7. Gurtner, G.C., et al., Wound repair and regeneration. Nature, 2008. 453(7193): p. 314.
    8. Velnar, T., T. Bailey, and V. Smrkolj, The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 2009. 37(5): p. 1528-1542.
    9. Sun, B.K., Z. Siprashvili, and P.A. Khavari, Advances in skin grafting and treatment of cutaneous wounds. Science, 2014. 346(6212): p. 941-945.
    10. Barrientos, S., et al., Growth factors and cytokines in wound healing. Wound repair and regeneration, 2008. 16(5): p. 585-601.
    11. Adair, T.H. and J.-P. Montani. Angiogenesis. in Colloquium Series on Integrated Systems Physiology: From Molecule to Function. 2010. Morgan & Claypool Life Sciences.
    12. Guo, S.a. and L.A. DiPietro, Factors affecting wound healing. Journal of dental research, 2010. 89(3): p. 219-229.
    13. Gowdak, L.H.W. and J.E. Krieger, Vascular Growth Factors, Progenitor Cells, and Angiogenesis, in Endothelium and Cardiovascular Diseases. 2018, Elsevier. p. 49-62.
    14. Gianni-Barrera, R., et al., Split for the cure: VEGF, PDGF-BB and intussusception in therapeutic angiogenesis. 2014, Portland Press Limited.
    15. Sood, A., M.S. Granick, and N.L. Tomaselli, Wound dressings and comparative effectiveness data. Advances in wound care, 2014. 3(8): p. 511-529.
    16. Dhivya, S., V.V. Padma, and E. Santhini, Wound dressings–a review. BioMedicine, 2015. 5(4).
    17. Boateng, J. and O. Catanzano, Advanced therapeutic dressings for effective wound healing—a review. Journal of pharmaceutical sciences, 2015. 104(11): p. 3653-3680.
    18. Aramwit, P., Introduction to biomaterials for wound healing. Wound Healing Biomaterials-Volume 2: Functional Biomaterials, 2016: p. 1.
    19. Powers, J.G., et al., Wound healing and treating wounds: Chronic wound care and management. Journal of the American Academy of Dermatology, 2016. 74(4): p. 607-625.
    20. Pereira, R.F. and P.J. Bartolo, Traditional therapies for skin wound healing. Advances in wound care, 2016. 5(5): p. 208-229.
    21. Sorg, H., et al., Skin wound healing: an update on the current knowledge and concepts. European Surgical Research, 2017. 58(1-2): p. 81-94.
    22. Ho, J., et al., Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review. Advances in wound care, 2017. 6(6): p. 191-209.
    23. Kamoun, E.A., E.-R.S. Kenawy, and X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, 2017. 8(3): p. 217-233.
    24. Chattopadhyay, S. and R.T. Raines, Review collagen‐based biomaterials for wound healing. Biopolymers, 2014. 101(8): p. 821-833.
    25. Mohandas, A., et al., Chitosan–hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds. Colloids and Surfaces B: Biointerfaces, 2015. 127: p. 105-113.
    26. Pourmoussa, A., et al., An update and review of cell-based wound dressings and their integration into clinical practice. Annals of translational medicine, 2016. 4(23).
    27. Rustad, K.C., et al., Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 2012. 33(1): p. 80-90.
    28. Bianco, P., “Mesenchymal” stem cells. Annual review of cell and developmental biology, 2014. 30: p. 677-704.
    29. Isakson, M., et al., Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem cells international, 2015. 2015.
    30. Friedenstein, A.J., J. Gorskaja, and N. Kulagina, Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental hematology, 1976. 4(5): p. 267-274.
    31. Caplan, A.I., Mesenchymal stem cells. Journal of orthopaedic research, 1991. 9(5): p. 641-650.
    32. Musina, R., et al., Differentiation potential of mesenchymal stem cells of different origin. Bulletin of Experimental Biology and Medicine, 2006. 141(1): p. 147-151.
    33. Rodriguez-Menocal, L., et al., Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing. Stem cell research & therapy, 2015. 6(1): p. 24.
    34. Walter, M., et al., Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Experimental cell research, 2010. 316(7): p. 1271-1281.
    35. Nie, C., et al., Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell transplantation, 2011. 20(2): p. 205-216.
    36. Lee, S.H., et al., Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts. Annals of Dermatology, 2012. 24(2): p. 136-143.
    37. Liu, L., et al., Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PloS one, 2014. 9(2): p. e88348.
    38. Lee, D.E., N. Ayoub, and D.K. Agrawal, Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem cell research & therapy, 2016. 7(1): p. 37.
    39. Luo, G., et al., Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound repair and regeneration, 2010. 18(5): p. 506-513.
    40. Badiavas, E.V. and V. Falanga, Treatment of chronic wounds with bone marrow–derived cells. Archives of dermatology, 2003. 139(4): p. 510-516.
    41. Ren, G., et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell stem cell, 2008. 2(2): p. 141-150.
    42. Hu, M.S.-M., et al., The role of stem cells during scarless skin wound healing. Advances in wound care, 2014. 3(4): p. 304-314.
    43. Mei, S.H., et al., Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American journal of respiratory and critical care medicine, 2010. 182(8): p. 1047-1057.
    44. Rao, M.S. and M.P. Mattson, Stem cells and aging: expanding the possibilities. Mechanisms of ageing and development, 2001. 122(7): p. 713-734.
    45. Caplan, A.I. and J.E. Dennis, Mesenchymal stem cells as trophic mediators. Journal of cellular biochemistry, 2006. 98(5): p. 1076-1084.
    46. Falanga, V., et al., Autologous bone marrow–derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue engineering, 2007. 13(6): p. 1299-1312.
    47. Yoshikawa, T., et al., Wound therapy by marrow mesenchymal cell transplantation. Plastic and reconstructive surgery, 2008. 121(3): p. 860-877.
    48. Dash, N.R., et al., Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation research, 2009. 12(5): p. 359-366.
    49. Hanna, E., et al., Gene therapies development: slow progress and promising prospect. Journal of market access & health policy, 2017. 5(1): p. 1265293.
    50. Jin, L., et al., Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics, 2014. 4(3): p. 240.
    51. Riley, M.K. and W. Vermerris, Recent advances in nanomaterials for gene delivery—a review. Nanomaterials, 2017. 7(5): p. 94.
    52. Ginn, S.L., et al., Gene therapy clinical trials worldwide to 2012–an update. The journal of gene medicine, 2013. 15(2): p. 65-77.
    53. Kotterman, M.A., T.W. Chalberg, and D.V. Schaffer, Viral vectors for gene therapy: translational and clinical outlook. Annual review of biomedical engineering, 2015. 17: p. 63-89.
    54. Lukashev, A. and A. Zamyatnin, Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Moscow), 2016. 81(7): p. 700-708.
    55. Nayerossadat, N., T. Maedeh, and P.A. Ali, Viral and nonviral delivery systems for gene delivery. Advanced biomedical research, 2012. 1.
    56. Nayak, S. and R.W. Herzog, Progress and prospects: immune responses to viral vectors. Gene therapy, 2010. 17(3): p. 295.
    57. Ramamoorth, M. and A. Narvekar, Non viral vectors in gene therapy-an overview. Journal of clinical and diagnostic research: JCDR, 2015. 9(1): p. GE01.
    58. Al-Dosari, M.S. and X. Gao, Nonviral gene delivery: principle, limitations, and recent progress. The AAPS journal, 2009. 11(4): p. 671.
    59. Mitra, A.K., K. Cholkar, and A. Mandal, Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. 2017: William Andrew.
    60. Godbey, W. and A. Mikos, Recent progress in gene delivery using non-viral transfer complexes. Journal of Controlled Release, 2001. 72(1-3): p. 115-125.
    61. Eliyahu, H., Y. Barenholz, and A. Domb, Polymers for DNA delivery. Molecules, 2005. 10(1): p. 34-64.
    62. Zhi, D., et al., The headgroup evolution of cationic lipids for gene delivery. Bioconjugate chemistry, 2013. 24(4): p. 487-519.
    63. de Ilarduya, C.T., Y. Sun, and N. Düzgüneş, Gene delivery by lipoplexes and polyplexes. European journal of pharmaceutical sciences, 2010. 40(3): p. 159-170.
    64. Raemdonck, K., et al., Maintaining the silence: reflections on long-term RNAi. Drug discovery today, 2008. 13(21-22): p. 917-931.
    65. Pack, D.W., et al., Design and development of polymers for gene delivery. Nature reviews Drug discovery, 2005. 4(7): p. 581.
    66. Mellott, A.J., M.L. Forrest, and M.S. Detamore, Physical non-viral gene delivery methods for tissue engineering. Annals of biomedical engineering, 2013. 41(3): p. 446-468.
    67. Parhiz, H., W.T. Shier, and M. Ramezani, From rationally designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. International journal of pharmaceutics, 2013. 457(1): p. 237-259.
    68. Dizaj, S.M., S. Jafari, and A.Y. Khosroushahi, A sight on the current nanoparticle-based gene delivery vectors. Nanoscale research letters, 2014. 9(1): p. 252.
    69. L Santos, J., et al., Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Current gene therapy, 2011. 11(1): p. 46-57.
    70. Guo, X. and L. Huang, Recent advances in nonviral vectors for gene delivery. Accounts of chemical research, 2011. 45(7): p. 971-979.
    71. Naldini, L., Gene therapy returns to centre stage. Nature, 2015. 526(7573): p. 351.
    72. Gonzalez-Fernandez, T., et al., Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta biomaterialia, 2017. 55: p. 226-238.
    73. Han, S.-W., et al., High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine: Nanotechnology, Biology and Medicine, 2008. 4(3): p. 215-225.
    74. Nakashima, S., et al. Highly efficient transfection of human marrow stromal cells by nucleofection. in Transplantation proceedings. 2005. Elsevier.
    75. Aluigi, M., et al., Nucleofection is an efficient nonviral transfection technique for human bone marrow–derived mesenchymal stem cells. Stem cells, 2006. 24(2): p. 454-461.
    76. Kim, J.A., et al., A novel electroporation method using a capillary and wire-type electrode. Biosensors and Bioelectronics, 2008. 23(9): p. 1353-1360.
    77. Otani, K., et al., Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. Journal of Controlled Release, 2009. 133(2): p. 146-153.
    78. Malecki, M., P. Kolsut, and R. Proczka, Angiogenic and antiangiogenic gene therapy. Gene therapy, 2005. 12(S1): p. S159.
    79. Kim, J., et al., Gene delivery nanoparticles to modulate angiogenesis. Advanced drug delivery reviews, 2017. 119: p. 20-43.
    80. Banfi, A., et al., Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. The FASEB journal, 2012. 26(6): p. 2486-2497.
    81. Han, S.-o., R.I. Mahato, and S.W. Kim, Water-soluble lipopolymer for gene delivery. Bioconjugate chemistry, 2001. 12(3): p. 337-345.
    82. Yockman, J., et al., Polymeric gene delivery of ischemia-inducible VEGF significantly attenuates infarct size and apoptosis following myocardial infarct. Gene therapy, 2009. 16(1): p. 127.
    83. Yi, F., H. Wu, and G.L. Jia, Formulation and characterization of poly (d, l‐lactide‐co‐glycolide) nanoparticle containing vascular endothelial growth factor for gene delivery. Journal of clinical pharmacy and therapeutics, 2006. 31(1): p. 43-48.
    84. Jo, J.-i., et al., Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue engineering, 2007. 13(2): p. 313-322.
    85. Sun, X.-D., et al., Non-viral endostatin plasmid transfection of mesenchymal stem cells via collagen scaffolds. Biomaterials, 2009. 30(6): p. 1222-1231.
    86. Jeng, L., B.R. Olsen, and M. Spector, Engineering endostatin-producing cartilaginous constructs for cartilage repair using nonviral transfection of chondrocyte-seeded and mesenchymal-stem-cell-seeded collagen scaffolds. Tissue Engineering Part A, 2010. 16(10): p. 3011-3021.
    87. Santos, E., et al., Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D. Trends in biotechnology, 2012. 30(6): p. 331-341.
    88. Duval, K., et al., Modeling Physiological events in 2D vs. 3D cell culture. Physiology, 2017. 32(4): p. 266-277.
    89. Edmondson, R., et al., Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and drug development technologies, 2014. 12(4): p. 207-218.
    90. Dupont, S., et al., Role of YAP/TAZ in mechanotransduction. Nature, 2011. 474(7350): p. 179.
    91. Xu, X., et al., Controlling major cellular processes of human mesenchymal stem cells using microwell structures. Advanced healthcare materials, 2014. 3(12): p. 1991-2003.
    92. Fu, J., et al., Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nature methods, 2010. 7(9): p. 733.
    93. Ihalainen, T.O., et al., Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nature materials, 2015. 14(12): p. 1252.
    94. Baharvand, H., et al., Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. International Journal of Developmental Biology, 2004. 50(7): p. 645-652.
    95. Kharkar, P.M., K.L. Kiick, and A.M. Kloxin, Designing degradable hydrogels for orthogonal control of cell microenvironments. Chemical Society Reviews, 2013. 42(17): p. 7335-7372.
    96. Ravi, M., et al., 3D cell culture systems: advantages and applications. Journal of cellular physiology, 2015. 230(1): p. 16-26.
    97. Benoit, D.S., et al., Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature materials, 2008. 7(10): p. 816.
    98. Baker, B.M. and C.S. Chen, Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci, 2012. 125(13): p. 3015-3024.
    99. Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773.
    100. Mandrycky, C., et al., 3D bioprinting for engineering complex tissues. Biotechnology advances, 2016. 34(4): p. 422-434.
    101. Kruth, J.-P., Material incress manufacturing by rapid prototyping techniques. CIRP Annals-Manufacturing Technology, 1991. 40(2): p. 603-614.
    102. Allard, T., et al. Use of hand-held laser scanning and 3D printing for creation of a museum exhibit. in 6th International Symposium on Virtual Reality, Archaelogy and Cultural Heritage. 2005.
    103. Symes, M.D., et al., Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature chemistry, 2012. 4(5): p. 349.
    104. Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. 1986, Google Patents.
    105. Zopf, D.A., et al., Bioresorbable airway splint created with a three-dimensional printer. New England Journal of Medicine, 2013. 368(21): p. 2043-2045.
    106. Gauvin, R., et al., Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012. 33(15): p. 3824-3834.
    107. Gou, M., et al., Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nature communications, 2014. 5: p. 3774.
    108. Ji, S. and M. Guvendiren, Recent advances in bioink design for 3D bioprinting of tissues and organs. Frontiers in bioengineering and biotechnology, 2017. 5: p. 23.
    109. Cui, H., et al., 3D bioprinting for organ regeneration. Advanced healthcare materials, 2017. 6(1).
    110. Jose, R.R., et al., Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1662-1678.
    111. Munaz, A., et al., Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 2016. 1(1): p. 1-17.
    112. Mironov, V., et al., Organ printing: tissue spheroids as building blocks. Biomaterials, 2009. 30(12): p. 2164-2174.
    113. Jakab, K., et al., Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010. 2(2): p. 022001.
    114. Chung, J.H., et al., Bio-ink properties and printability for extrusion printing living cells. Biomaterials Science, 2013. 1(7): p. 763-773.
    115. Murphy, S.V., A. Skardal, and A. Atala, Evaluation of hydrogels for bio‐printing applications. Journal of Biomedical Materials Research Part A, 2013. 101(1): p. 272-284.
    116. Levato, R., et al., Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication, 2014. 6(3): p. 035020.
    117. Pati, F., et al., Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature communications, 2014. 5: p. 3935.
    118. Yu, Y., et al., Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. Journal of biomechanical engineering, 2013. 135(9): p. 091011.
    119. Guvendiren, M., et al., Designing biomaterials for 3D printing. ACS biomaterials science & engineering, 2016. 2(10): p. 1679-1693.
    120. Panwar, A. and L.P. Tan, Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules, 2016. 21(6): p. 685.
    121. Malda, J., et al., 25th anniversary article: engineering hydrogels for biofabrication. Advanced materials, 2013. 25(36): p. 5011-5028.
    122. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research, 2015. 6(2): p. 105-121.
    123. Van Vlierberghe, S., P. Dubruel, and E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011. 12(5): p. 1387-1408.
    124. Mignon, A., et al., pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. Journal of materials science, 2015. 50(2): p. 970-979.
    125. Ullah, F., et al., Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 2015. 57: p. 414-433.
    126. Fu, Y. and W.J. Kao, In situ forming poly (ethylene glycol)‐based hydrogels via thiol‐maleimide Michael‐type addition. Journal of biomedical materials research Part A, 2011. 98(2): p. 201-211.
    127. Sivashanmugam, A., et al., An overview of injectable polymeric hydrogels for tissue engineering. European Polymer Journal, 2015. 72: p. 543-565.
    128. Teixeira, L.S.M., et al., Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials, 2012. 33(5): p. 1281-1290.
    129. Billiet, T., et al., The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014. 35(1): p. 49-62.
    130. Dababneh, A.B. and I.T. Ozbolat, Bioprinting technology: a current state-of-the-art review. Journal of Manufacturing Science and Engineering, 2014. 136(6): p. 061016.
    131. Koch, L., et al., Skin tissue generation by laser cell printing. Biotechnology and bioengineering, 2012. 109(7): p. 1855-1863.
    132. Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue Engineering Part C: Methods, 2013. 20(6): p. 473-484.
    133. Yannas, I. and J.F. Burke, Design of an artificial skin. I. Basic design principles. Journal of Biomedical Materials Research Part A, 1980. 14(1): p. 65-81.
    134. Fung, Y.-c., Biomechanics: mechanical properties of living tissues. 2013: Springer Science & Business Media.
    135. Lee, W., et al., On‐demand three‐dimensional freeform fabrication of multi‐layered hydrogel scaffold with fluidic channels. Biotechnology and bioengineering, 2010. 105(6): p. 1178-1186.
    136. Ahmed, T.A., E.V. Dare, and M. Hincke, Fibrin: a versatile scaffold for tissue engineering applications. Tissue Engineering Part B: Reviews, 2008. 14(2): p. 199-215.
    137. Uppal, R., et al., Hyaluronic acid nanofiber wound dressing—production, characterization, and in vivo behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 97(1): p. 20-29.
    138. Ovsianikov, A., et al., Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules, 2011. 12(4): p. 851-858.
    139. Bae, Y., et al., Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells. Carbohydrate polymers, 2016. 153: p. 379-390.
    140. Loh, Q.L. and C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 2013. 19(6): p. 485-502.
    141. Bružauskaitė, I., et al., Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology, 2016. 68(3): p. 355-369.
    142. Rozaini, M., et al., The effect of topical application of Malaysian honey on burn wound healing. Jurnal Veterinar Malaysia, 2004. 2004(1-2): p. 47-50.
    143. Hiremath, J.N. and B. Vishalakshi, Effect of Crosslinking on swelling behaviour of IPN hydrogels of Guar Gum & Polyacrylamide. Der Pharma Chemica, 2012. 4(3): p. 946-955.
    144. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
    145. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
    146. Cha, C., et al., Tuning the dependency between stiffness and permeability of a cell encapsulating hydrogel with hydrophilic pendant chains. Acta biomaterialia, 2011. 7(10): p. 3719-3728.
    147. Ahearne, M., Introduction to cell–hydrogel mechanosensing. Interface focus, 2014. 4(2): p. 20130038.
    148. Klagsbrun, M. and P.A. D'Amore, Vascular endothelial growth factor and its receptors. Cytokine & growth factor reviews, 1996. 7(3): p. 259-270.

    QR CODE