研究生: |
吳泓毅 Wu, Hong-Yi |
---|---|
論文名稱: |
研究不同末端基團對於自組裝單分子薄膜作為 Ru/SAM/Si擴散阻擋層的效果 Investigation of the Effect of different terminal groups on self-assembled monolayers (SAMs) as diffusion barriers at Ru/SAM/Si |
指導教授: |
龔佩雲
Keng, Pei-Yuin |
口試委員: |
劉俊彥
Liu, Chun-Yen 呂明諺 Lu, Ming-Yen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 單分子薄膜 、釕金屬 、擴散 、擴散障礙層 、烷氧基矽烷 |
外文關鍵詞: | Monolayer, Ruthenium, Diffusion, Barrier, Alkoxysilane |
相關次數: | 點閱:76 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著積體電路元件的規模不斷縮小,這些電路中金屬內連線的特性對 RC 延遲
(電阻和電容)產生了重大影響。 Ta/TaN 是最常用的擴散阻擋層和附著層,其
電阻較高,加劇 RC 延遲效應。這一限制阻礙了它在先進的超細間距銅金屬化
製程中的應用。具有超薄膜厚度(1-2 奈米)的自組裝單層(SAM)是一種很有
前途的擴散阻擋層。本文研究了 2-HBITES (2-羥基苯基亞胺三乙氧基矽烷) 、
BITES (苯基亞胺三乙氧基矽烷)和 OTS (正辛基三乙氧基矽烷) 三種SAM作為金
屬內連線中潛在的擴散阻擋層。我們假設,具有不同的末端基團的 SAM 影響其
螯合釕並作為擴散阻擋層的能力。為了驗證這一點,我們在不同溫度下對
Si/Ox/Ru 和 Si/SAMs/Ox/Ru 樣品進行了快速熱退火(RTA)處理,並對薄膜電
阻、X 射線衍射和 縱深分析進行分析釕和矽之間的相變狀態。
As the scaling of IC components continues to shrink, the characteristics of
metal interconnects within these circuits significantly impact the RC delay (resistance
and capacitance). Ta/TaN, the most widely used diffusion barrier and adhesion layer,
has a high resistance, which contributes to the RC delay effect. This limitation hampers
its deployment in current ultra-fine pitch Cu metallization techniques. Self-assembled
monolayers (SAMs) with an ultra-film thickness (1-2nm) present a promising
alternative
as
diffusion
barrier
2-hydroxybenzylimine-triethoxysilane
layers.
Herein,
we investigated
(2-HBITES), benzylimine-triethoxysilane
(BITES) and n-octyltriethoxysilane (OTS) SAM as potential diffusion barrier in a
metal interconnect. We hypothesize that SAM with different terminal groups influence
their ability to inhibit ruthenium interdiffusion and improve the adhesion between
metal and low-k dielectric. To test this hypothesis, the Si/Ox/Ru and Si/Ox/SAMs/Ru
samples were treated via Rapid Thermal Annealing (RTA) at different temperatures. To
show SAM barrier failure, the state of phase transformation between ruthenium and
silicon was studied using sheet resistance, XRD, and depth profile.
[1] A.C.B. Lovell, A.M. Tyndall, The electrical conductivity of thin metallic films I—Rubidium on pyrex glass surfaces, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 157 (1997) 311–330. https://doi.org/10.1098/rspa.1936.0197.
[2] K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals, Mathematical Proceedings of the Cambridge Philosophical Society 34 (1938) 100–108. https://doi.org/10.1017/S0305004100019952.
[3] A. Allan, D. Edenfeld, W.H. Joyner, A.B. Kahng, M. Rodgers, Y. Zorian, 2001 technology roadmap for semiconductors, Computer 35 (2002) 42–53. https://doi.org/10.1109/2.976918.
[4] L.G. Wen, P. Roussel, O.V. Pedreira, B. Briggs, B. Groven, S. Dutta, M.I. Popovici, N. Heylen, I. Ciofi, K. Vanstreels, F.W. Østerberg, O. Hansen, D.H. Petersen, K. Opsomer, C. Detavernie, C.J. Wilson, S.V. Elshocht, K. Croes, J. Bömmels, Z. Tőkei, C. Adelmann, Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper, ACS Appl Mater Interfaces 8 (2016) 26119–26125. https://doi.org/10.1021/acsami.6b07181.
[5] M.H. Van Der Veen, N. Heyler, O.V. Pedreira, I. Ciofi, S. Decoster, V.V. Gonzalez, N. Jourdan, H. Struyf, K. Croes, C.J. Wilson, Zs. Tokei, Damascene Benchmark of Ru, Co and Cu in Scaled Dimensions, 2018 IEEE International Interconnect Technology Conference (IITC) (2018) 172–174. https://doi.org/10.1109/IITC.2018.8430407.
[6] O.V. Pedreira, K. Croes, A. Leśniewska, C. Wu, M.H. van der Veen, J. de Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V.V. Gonzalez, J. Bömmels, Zs. Tőkei, Reliability study on cobalt and ruthenium as alternative metals for advanced interconnects, in: 2017 IEEE International Reliability Physics Symposium (IRPS), 2017: pp. 6B-2.1-6B–2.8. https://doi.org/10.1109/IRPS.2017.7936340.
[7] M.T. Wang, Y.C. Lin, M.C. Chen, Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion, J. Electrochem. Soc. 145 (1998) 2538–2545. https://doi.org/10.1149/1.1838675.
[8] K. Holloway, P.M. Fryer, Tantalum as a diffusion barrier between copper and silicon, Applied Physics Letters 57 (1990) 1736–1738. https://doi.org/10.1063/1.104051.
[9] S.W. Loh, D.H. Zhang, C.Y. Li, R. Liu, A.T.S. Wee, Study of copper diffusion into Ta and TaN barrier materials for MOS devices, Thin Solid Films 462–463 (2004) 240–244. https://doi.org/10.1016/j.tsf.2004.05.102.
[10] T. Karabacak, T.-M. Lu, Enhanced step coverage by oblique angle physical vapor deposition, Journal of Applied Physics 97 (2005). https://doi.org/10.1063/1.1937476.
[11] H. Xu, Z.-J. Hu, X.-P. Qu, H. Wan, S.-S. Yan, M. Li, S.-M. Chen, Y.-H. Zhao, J. Zhang, M.R. Baklanov, Effect of thickness scaling on the permeability and thermal stability of Ta(N) diffusion barrier, Applied Surface Science 498 (2019) 143887. https://doi.org/10.1016/j.apsusc.2019.143887.
[12] J.-N. Sun, D. Gidley, T. Dull, W. Frieze, A. Yee, E. Ryan, S. Lin, J. Wetzel, Probing diffusion barrier integrity on porous silica low-k thin films using positron annihilation lifetime spectroscopy, Journal of Applied Physics 89 (2001). https://doi.org/10.1063/1.1360704.
[13] J.-S. Min, H.-S. Park, S.-W. Kang, Metal-organic atomic-layer deposition of titanium-silicon-nitride films, Applied Physics Letters 75 (1999) 1521. https://doi.org/10.1063/1.124742.
[14] J.-S. Min, J.-S. Park, H.-S. Park, S.-W. Kanga, The Mechanism of Si Incorporation and the Digital Control of Si Content during the Metallorganic Atomic Layer Deposition of Ti‐Si‐N Thin Films, J. Electrochem. Soc. 147 (2000) 3868. https://doi.org/10.1149/1.1393988.
[15] C.-L. Lo, B.A. Helfrecht, Y. He, D.M. Guzman, N. Onofrio, S. Zhang, D. Weinstein, A. Strachan, Z. Chen, Opportunities and challenges of 2D materials in back-end-of-line interconnect scaling, Journal of Applied Physics 128 (2020) 080903. https://doi.org/10.1063/5.0013737.
[16] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev. 105 (2005) 1103–1170. https://doi.org/10.1021/cr0300789.
[17] A. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C. Whelan, Y. Travaly, Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2Derived Self-Assembled Monolayers, Advanced Functional Materials - ADV FUNCT MATER 20 (2010) 1125–1131. https://doi.org/10.1002/adfm.200902072.
[18] N. Mikami, N. Hata, T. Kikkawa, H. Machida, Robust self-assembled monolayer as diffusion barrier for copper metallization, Applied Physics Letters 83 (2003) 5181–5183. https://doi.org/10.1063/1.1635665.
[19] Y. Chung, S. Lee, C. Mahata, J. Seo, S.-M. Lim, M. Jeong, H. Jung, Y.-C. Joo, Y.-B. Park, H. Kim, T. Lee, Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties, RSC Adv. 4 (2014) 60123–60130. https://doi.org/10.1039/C4RA08134J.
[20] A. Krishnamoorthy, K. Chanda, S.P. Murarka, G. Ramanath, J.G. Ryan, Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization, Applied Physics Letters 78 (2001) 2467–2469. https://doi.org/10.1063/1.1365418.
[21] S. Leitherer, C.M. Jäger, M. Halik, T. Clark, M. Thoss, Modeling charge transport in C60-based self-assembled monolayers for applications in field-effect transistors, The Journal of Chemical Physics 140 (2014) 204702. https://doi.org/10.1063/1.4876035.
[22] B. Li, C. Darcel, T. Roisnel, P. Dixneuf, Cycloruthenation of aryl imines and N-heteroaryl benzenes via C–H bond activation with Ru(II) and acetate partners, Journal of Organometallic Chemistry 793 (2015). https://doi.org/10.1016/j.jorganchem.2015.02.050.
[23] J.I.A.Y.O.U. SUN, P.Y. Keng, Ultrathin Self-Assembled Monolayer as an Effective Ru Diffusion Barrier, National Tsing Hua University, 2022. https://hdl.handle.net/11296/hx52vj.
[24] B.-F. Hsu, J.-Y. Sun, Y.-L. Chen, M.-Y. Lu, S.-Y. Chang, P.Y. Keng, Functionalizing self-assembled monolayers to reduce interface scattering in ruthenium/dielectric for next-generation microelectronic interconnects, Applied Surface Science 645 (2024) 158870. https://doi.org/10.1016/j.apsusc.2023.158870.
[25] G. Yan, G. Chen, Z. Peng, Z. Shen, X. Tang, Y. Sun, X. Zeng, L. Lin, The Cross-Linking Mechanism and Applications of Catechol–Metal Polymer Materials, Advanced Materials Interfaces 8 (2021) 2100239. https://doi.org/10.1002/admi.202100239.
[26] F.N. Rein, R.C. Rocha, H.E. Toma, Catecholamine complexes of ruthenium-edta and their redox chemistry, J Inorg Biochem 85 (2001) 155–166. https://doi.org/10.1016/s0162-0134(01)00194-5.
[27] (15) Study on chemical vapor deposited copper films on cyano and carboxylic self-assembled monolayer diffusion barriers | Request PDF, ResearchGate (2009). https://www.researchgate.net/publication/222330870_Study_on_chemical_vapor_deposited_copper_films_on_cyano_and_carboxylic_self-assembled_monolayer_diffusion_barriers (accessed April 24, 2024).
[28] G.E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff., IEEE Solid-State Circuits Soc. Newsl. 11 (2006) 33–35. https://doi.org/10.1109/N-SSC.2006.4785860.
[29] H.-W. Kim, Recent Trends in Copper Metallization, Electronics 11 (2022) 2914. https://doi.org/10.3390/electronics11182914.
[30] D. Choi, Potential of Ruthenium and Cobalt as Next-generation Semiconductor Interconnects, Korean J. Met. Mater. 56 (2018) 605–610. https://doi.org/10.3365/KJMM.2018.56.8.605.
[31] C. Adelmann, L.G. Wen, A.P. Peter, Y.K. Siew, K. Croes, J. Swerts, M. Popovici, K. Sankaran, G. Pourtois, S. Van Elshocht, J. Bommels, Z. Tokei, Alternative metals for advanced interconnects, in: IEEE International Interconnect Technology Conference, IEEE, San Hose, CA, USA, 2014: pp. 173–176. https://doi.org/10.1109/IITC.2014.6831863.
[32] K. Croes, Ch. Adelmann, C.J. Wilson, H. Zahedmanesh, O.V. Pedreira, C. Wu, A. Lesniewska, H. Oprins, S. Beyne, I. Ciofi, D. Kocaay, M. Stucchi, Zs. Tokei, Interconnect metals beyond copper: reliability challenges and opportunities, in: 2018 IEEE International Electron Devices Meeting (IEDM), IEEE, San Francisco, CA, 2018: p. 5.3.1-5.3.4. https://doi.org/10.1109/IEDM.2018.8614695.
[33] D. Tierno, O. Varela Pedreira, C. Wu, N. Jourdan, L. Kljucar, Zs. Tőkei, K. Croes, Cobalt and Ruthenium drift in ultra-thin oxides, Microelectronics Reliability 100–101 (2019) 113407. https://doi.org/10.1016/j.microrel.2019.113407.
[34] C.-K. Hu, J. Kelly, J.H.-C. Chen, H. Huang, Y. Ostrovski, R. Patlolla, B. Peethala, P. Adusumilli, T. Spooner, L.M. Gignac, J. Bruley, C. Breslin, S.A. Cohen, G. Lian, M. Ali, R. Long, G. Hornicek, T. Kane, V. Kamineni, X. Zhang, F. Mont, S. Siddiqui, Electromigration and resistivity in on-chip Cu, Co and Ru damascene nanowires, in: 2017 IEEE International Interconnect Technology Conference (IITC), IEEE, HsinChu, Taiwan, 2017: pp. 1–3. https://doi.org/10.1109/IITC-AMC.2017.7968977.
[35] N.A. Lanzillo, O.D. Restrepo, P.S. Bhosale, E. Cruz-Silva, C.-C. Yang, B. Youp Kim, T. Spooner, T. Standaert, C. Child, G. Bonilla, K.V.R.M. Murali, Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study, Appl. Phys. Lett. 112 (2018). https://doi.org/10.1063/1.5027096.
[36] S.-Q. Wang, J. Schlueter, C. Gondran, T. Boden, Step coverage comparison of Ti/TiN deposited by collimated and uncollimated physical vapor deposition techniques, J. Vac. Sci. Technol. B 14 (1996) 1846–1852. https://doi.org/10.1116/1.588565.
[37] The application of atomic layer deposition for metallization of 65 nm and beyond, Surface and Coatings Technology 200 (2006) 3104–3111. https://doi.org/10.1016/j.surfcoat.2005.07.006.
[38] W.C. Bigelow, D.L. Pickett, W.A. Zisman, Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids, Journal of Colloid Science 1 (1946) 513–538. https://doi.org/10.1016/0095-8522(46)90059-1.
[39] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 96 (1996) 1533–1554. https://doi.org/10.1021/cr9502357.
[40] G. Heimel, L. Romaner, E. Zojer, J.-L. Bredas, The Interface Energetics of Self-Assembled Monolayers on Metals, Acc. Chem. Res. 41 (2008) 721–729. https://doi.org/10.1021/ar700284q.
[41] W. Yoshida, R.P. Castro, J.-D. Jou, Y. Cohen, Multilayer Alkoxysilane Silylation of Oxide Surfaces, Langmuir 17 (2001) 5882–5888. https://doi.org/10.1021/la001780s.
[42] J. Zhong, J. Chinn, C.B. Roberts, W.R. Ashurst, Vapor-Phase Deposited Chlorosilane-Based Self-Assembled Monolayers on Various Substrates for Thermal Stability Analysis, Ind. Eng. Chem. Res. 56 (2017) 5239–5252. https://doi.org/10.1021/acs.iecr.6b04462.
[43] P. Nothdurft, S. Feldbacher, G. Jakopic, I. Mühlbacher, S. Pötz, W. Kern, Surface characterization of copper substrates modified with carboxyl terminated phosphonic acids, International Journal of Adhesion and Adhesives 84 (2018) 143–152. https://doi.org/10.1016/j.ijadhadh.2018.03.012.
[44] M. Singh, N. Kaur, E. Comini, The role of self-assembled monolayers in electronic devices, J. Mater. Chem. C 8 (2020) 3938–3955. https://doi.org/10.1039/D0TC00388C.
[45] S. Lee, A. Puck, M. Graupe, R. Colorado, Y.-S. Shon, T.R. Lee, S.S. Perry, Structure, Wettability, and Frictional Properties of Phenyl-Terminated Self-Assembled Monolayers on Gold, Langmuir 17 (2001) 7364–7370. https://doi.org/10.1021/la0111497.
[46] N. Faucheux, R. Schweiss, K. Lützow, C. Werner, T. Groth, Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies, Biomaterials 25 (2004) 2721–2730. https://doi.org/10.1016/j.biomaterials.2003.09.069.
[47] H.I. Kim, M. Graupe, O. Oloba, T. Koini, S. Imaduddin, T.R. Lee, S.S. Perry, Molecularly Specific Studies of the Frictional Properties of Monolayer Films: A Systematic Comparison of CF3-, (CH3)2CH-, and CH3-Terminated Films, Langmuir 15 (1999) 3179–3185. https://doi.org/10.1021/la981497h.
[48] C.D. Bain, J. Evall, G.M. Whitesides, Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent, J. Am. Chem. Soc. 111 (1989) 7155–7164. https://doi.org/10.1021/ja00200a039.
[49] P.G. Ganesan, A.P. Singh, G. Ramanath, Diffusion barrier properties of carboxyl- and amine-terminated molecular nanolayers, Appl. Phys. Lett. 85 (2004) 579–581. https://doi.org/10.1063/1.1775035.
[50] A.R. Yadav, R. Sriram, J.A. Carter, B.L. Miller, Comparative study of solution–phase and vapor–phase deposition of aminosilanes on silicon dioxide surfaces, Materials Science and Engineering: C 35 (2014) 283–290. https://doi.org/10.1016/j.msec.2013.11.017.
[51] B. Kobrin, J. Chinn, R.W. Ashurst, R. Maboudian, Molecular vapor deposition (MVD) for improved SAM coatings, in: Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS IV, SPIE, 2005: pp. 151–157. https://doi.org/10.1117/12.592627.
[52] A. Hozumi, Y. Yokogawa, T. Kameyama, H. Sugimura, K. Hayashi, H. Shirayama, O. Takai, Amino-terminated self-assembled monolayer on a SiO2 surface formed by chemical vapor deposition, J. Vac. Sci. Technol. A 19 (2001) 1812–1816. https://doi.org/10.1116/1.1336833.
[53] W.H.K. Perera, M.G. Masteghin, H. Shim, J.D. Davies, J.L. Ryan, S.J. Hinder, J.S. Yun, W. Zhang, K.D.G.I. Jayawardena, S.R.P. Silva, Modification of Hydrophobic Self-Assembled Monolayers with Nanoparticles for Improved Wettability and Enhanced Carrier Lifetimes Over Large Areas in Perovskite Solar Cells, Solar RRL 7 (2023) 2300388. https://doi.org/10.1002/solr.202300388.
[54] S. Ren, S. Yang, Y. Zhao, J. Zhou, T. Xu, W. Liu, Friction and Wear Studies of Octadecyltrichlorosilane SAM on Silicon, Tribology Letters 13 (2002) 233–239. https://doi.org/10.1023/A:1021076824408.
[55] M.W.G. Hoffmann, J.D. Prades, L. Mayrhofer, F. Hernandez-Ramirez, T.T. Järvi, M. Moseler, A. Waag, H. Shen, Highly Selective SAM–Nanowire Hybrid NO2 Sensor: Insight into Charge Transfer Dynamics and Alignment of Frontier Molecular Orbitals, Advanced Functional Materials 24 (2014) 595–602. https://doi.org/10.1002/adfm.201301478.
[56] D. Mandler, S. Kraus-Ophir, Self-assembled monolayers (SAMs) for electrochemical sensing, J Solid State Electrochem 15 (2011) 1535–1558. https://doi.org/10.1007/s10008-011-1493-6.
[57] Y.-X. Sun, S.-F. Wang, X.-H. Zhang, Y.-F. Huang, Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode, Sensors and Actuators B: Chemical 113 (2006) 156–161. https://doi.org/10.1016/j.snb.2005.02.042.
[58] T. Ishida, Self-Assembled Monolayers for Molecular Nanoelectronics, in: T. Nakamura, T. Matsumoto, H. Tada, K. Sugiura (Eds.), Chemistry of Nanomolecular Systems: Towards the Realization of Molecular Devices, Springer, Berlin, Heidelberg, 2003: pp. 91–106. https://doi.org/10.1007/978-3-662-05250-1_6.
[59] T.S. Rao, R. Feser, Mono and bilayer coatings of alkanethiol and silane on copper: Prevents corrosion and regulate bacterial adhesion, Materials Today Communications 36 (2023) 106517. https://doi.org/10.1016/j.mtcomm.2023.106517.
[60] M. Horitani, K. Shisler, W.E. Broderick, R.U. Hutcheson, K.S. Duschene, A.R. Marts, B.M. Hoffman, J.B. Broderick, Radical SAM catalysis via an organometallic intermediate with an Fe–[5′-C]-deoxyadenosyl bond, Science 352 (2016) 822–825. https://doi.org/10.1126/science.aaf5327.
[61] P. Maury, M. Péter, V. Mahalingam, D.N. Reinhoudt, J. Huskens, Patterned Self-Assembled Monolayers on Silicon Oxide Prepared by Nanoimprint Lithography and Their Applications in Nanofabrication, Advanced Functional Materials 15 (2005) 451–457. https://doi.org/10.1002/adfm.200400284.
[62] T.-L. Liu, M. Harake, S.F. Bent, Sequential Use of Orthogonal Self-Assembled Monolayers for Area-Selective Atomic Layer Deposition of Dielectric on Metal, Advanced Materials Interfaces 10 (2023) 2202134. https://doi.org/10.1002/admi.202202134.
[63] E. Färm, M. Vehkamäki, M. Ritala, M. Leskelä, Passivation of copper surfaces for selective-area ALD using a thiol self-assembled monolayer, Semicond. Sci. Technol. 27 (2012) 074004. https://doi.org/10.1088/0268-1242/27/7/074004.
[64] D. Bobb-Semple, K.L. Nardi, N. Draeger, D.M. Hausmann, S.F. Bent, Area-Selective Atomic Layer Deposition Assisted by Self-Assembled Monolayers: A Comparison of Cu, Co, W, and Ru, Chem. Mater. 31 (2019) 1635–1645. https://doi.org/10.1021/acs.chemmater.8b04926.
[65] C.-W. Chang, Y.-H. Tseng, C.-S. Hsu, J.-T. Chen, Area-Selective Atomic Layer Deposition on Metal/Dielectric Patterns: Amphiphobic Coating, Vaporizable Inhibitors, and Regenerative Processing, ACS Appl. Mater. Interfaces 15 (2023) 28817–28824. https://doi.org/10.1021/acsami.3c03752.
[66] C.-W. Chang, H.-H. Hsu, C.-S. Hsu, J.-T. Chen, Achieving area-selective atomic layer deposition with fluorinated self-assembled monolayers, Journal of Materials Chemistry C 9 (2021) 14589–14595. https://doi.org/10.1039/D1TC04015D.
[67] Area-selective ALD of diffusion barriers for via optimization – There is plenty of room at the bottom – Atomic Limits, (2022). https://www.atomiclimits.com/2022/04/18/area-selective-ald-of-diffusion-barriers-for-via-optimization-there-is-plenty-of-room-at-the-bottom/ (accessed May 20, 2024).
[68] D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Self assembled monolayers on silicon for molecular electronics, Analytica Chimica Acta 568 (2006) 84–108. https://doi.org/10.1016/j.aca.2005.10.027.
[69] N. Satyanarayana, S.K. Sinha, M.P. Srinivasan, Friction and wear life evaluation of silane based self assembled monolayers on silicon surface, in: D. Dowson, M. Priest, G. Dalmaz, A.A. Lubrecht (Eds.), Tribology and Interface Engineering Series, Elsevier, 2005: pp. 821–826. https://doi.org/10.1016/S0167-8922(05)80084-7.
[70] A. Wang, H. Tang, T. Cao, S.O. Salley, K.Y.S. Ng, In vitro stability study of organosilane self-assemble monolayers and multilayers, Journal of Colloid and Interface Science 291 (2005) 438–447. https://doi.org/10.1016/j.jcis.2005.05.008.
[71] H. Sugimura, T. Hanji, K. Hayashi, O. Takai, Surface modification of an organosilane self-assembled monolayer on silicon substrates using atomic force microscopy: scanning probe electrochemistry toward nanolithography, Ultramicroscopy 91 (2002) 221–226. https://doi.org/10.1016/S0304-3991(02)00102-X.
[72] A.I.A. Soliman, T. Utsunomiya, T. Ichii, H. Sugimura, 1,2-Epoxyalkane: Another Precursor for Fabricating Alkoxy Self-Assembled Monolayers on Hydrogen-Terminated Si(111), Langmuir 34 (2018) 13162–13170. https://doi.org/10.1021/acs.langmuir.8b02717.
[73] N.S.K. Gunda, M. Singh, L. Norman, K. Kaur, S.K. Mitra, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker, Applied Surface Science 305 (2014) 522–530. https://doi.org/10.1016/j.apsusc.2014.03.130.
[74] Y. Dufil, V. Gadenne, P. Carrière, J.-M. Nunzi, L. Patrone, Growth and organization of (3-Trimethoxysilylpropyl) diethylenetriamine within reactive amino-terminated self-assembled monolayer on silica, Applied Surface Science 508 (2020) 145210. https://doi.org/10.1016/j.apsusc.2019.145210.
[75] Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, T. Homma, Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering, Applied Surface Science 363 (2016) 572–577. https://doi.org/10.1016/j.apsusc.2015.12.035.
[76] J.A. Howarter, J.P. Youngblood, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane, Langmuir 22 (2006) 11142–11147. https://doi.org/10.1021/la061240g.
[77] B. Bhushan, K. Kwak, S. Gupta, S. Lee, Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces, Journal of the Royal Society, Interface / the Royal Society 6 (2008) 719–33. https://doi.org/10.1098/rsif.2008.0398.
[78] J.D. Le Grange, J.L. Markham, C.R. Kurkjian, Effects of surface hydration on the deposition of silane monolayers on silica, Langmuir 9 (1993) 1749–1753. https://doi.org/10.1021/la00031a023.
[79] S.R. Wasserman, Y.T. Tao, G.M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir 5 (1989) 1074–1087. https://doi.org/10.1021/la00088a035.
[80] P. Silberzan, L. Leger, D. Ausserre, J.J. Benattar, Silanation of silica surfaces. A new method of constructing pure or mixed monolayers, Langmuir 7 (1991) 1647–1651. https://doi.org/10.1021/la00056a017.
[81] S. Lee, T. Ishizaki, N. Saito, O. Takai, Effect of Reaction Temperature on Growth of Organosilane Self-Assembled Monolayers, Jjap 47 (2008) 6442. https://doi.org/10.1143/JJAP.47.6442.
[82] D.L. Allara, A.N. Parikh, F. Rondelez, Evidence for a Unique Chain Organization in Long Chain Silane Monolayers Deposited on Two Widely Different Solid Substrates, Langmuir 11 (1995) 2357–2360. https://doi.org/10.1021/la00007a007.
[83] X. Jiang, S.F. Bent, Area-Selective ALD with Soft Lithographic Methods: Using Self-Assembled Monolayers to Direct Film Deposition, J. Phys. Chem. C 113 (2009) 17613–17625. https://doi.org/10.1021/jp905317n.
[84] Organosiloxane nanolayer as diffusion barrier for Cu metallization on Si, Applied Surface Science 567 (2021) 150800. https://doi.org/10.1016/j.apsusc.2021.150800.
[85] P.-H. Wu, Y.-Z. Lai, Y.-P. Zhang, M.C. Sil, P.-H.H. Lee, T.-C. Wei, C.-M. Chen, Organosiloxane Monolayers Terminated with Amine Groups as Adhesives for Si Metallization, ACS Appl. Nano Mater. 3 (2020) 3741–3749. https://doi.org/10.1021/acsanm.0c00430.
[86] A. Krishnamoorthy, K. Chanda, S.P. Murarka, G. Ramanath, J.G. Ryan, Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization, Appl. Phys. Lett. 78 (2001) 2467–2469. https://doi.org/10.1063/1.1365418.
[87] A. Maestre Caro, G. Maes, G. Borghs, C.M. Whelan, Screening self-assembled monolayers as Cu diffusion barriers, Microelectronic Engineering 85 (2008) 2047–2050. https://doi.org/10.1016/j.mee.2008.04.014.
[88] Z. Kong, Q. Wang, L. Ding, T. Wu, Study on chemical vapor deposited copper films on cyano and carboxylic self-assembled monolayer diffusion barriers, Thin Solid Films 518 (2010) 4852–4859. https://doi.org/10.1016/j.tsf.2010.02.016.
[89] D.D. Gandhi, M. Lane, Y. Zhou, A.P. Singh, S. Nayak, U. Tisch, M. Eizenberg, G. Ramanath, Annealing-induced interfacial toughening using a molecular nanolayer, Nature 447 (2007) 299–302. https://doi.org/10.1038/nature05826.
[90] G. Ramanath, G. Cui, P.G. Ganesan, X. Guo, A.V. Ellis, M. Stukowski, K. Vijayamohanan, P. Doppelt, M. Lane, Self-assembled subnanolayers as interfacial adhesion enhancers and diffusion barriers for integrated circuits, Applied Physics Letters 83 (2003) 383–385. https://doi.org/10.1063/1.1591232.
[91] P.-H. Wu, Y.-Z. Lai, Y.-P. Zhang, M.C. Sil, P.-H.H. Lee, T.-C. Wei, C.-M. Chen, Organosiloxane Monolayers Terminated with Amine Groups as Adhesives for Si Metallization, ACS Appl. Nano Mater. 3 (2020) 3741–3749. https://doi.org/10.1021/acsanm.0c00430.
[92] H. Schiff, Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen, Ann. Chem. Pharm. 131 (1864) 118–119. https://doi.org/10.1002/jlac.18641310113.
[93] B.D. Clercq, F. Lefebvre, F. Verpoort, Immobilization of multifunctional Schiff base containing ruthenium complexes on MCM-41, Applied Catalysis A: General 247 (2003) 345–364. https://doi.org/10.1016/S0926-860X(03)00126-1.
[94] I.L. Lagadic, Schiff base chelate-functionalized organoclays, Microporous and Mesoporous Materials 95 (2006) 226–233. https://doi.org/10.1016/j.micromeso.2006.05.036.
[95] B. De Clercq, F. Verpoort, Ring-closing metathesis, Kharasch addition and enol ester synthesis catalysed by a novel class of ruthenium(II) complexes, Tetrahedron Letters 42 (2001) 8959–8963. https://doi.org/10.1016/S0040-4039(01)01952-9.
[96] M. Cegłowski, G. Schroeder, Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions, Chemical Engineering Journal 263 (2015) 402–411. https://doi.org/10.1016/j.cej.2014.11.047.
[97] S. Q. Memon, N. Memon, A. Mallah, R. Soomro, M. Y. Khuhawar, Schiff Bases as Chelating Reagents for Metal Ions Analysis, (2014). https://www.ingentaconnect.com/content/ben/cac/2014/00000010/00000003/art00013 (accessed June 13, 2024).
[98] S. Parambadath, A. Mathew, A. Mohan, C.-S. Ha, Chelation dependent selective adsorption of metal ions by Schiff Base modified SBA-15 from aqueous solutions, Journal of Environmental Chemical Engineering 8 (2020) 104248. https://doi.org/10.1016/j.jece.2020.104248.
[99] G. Marinescu, D.C. Culita, C. Romanitan, S. Somacescu, C.D. Ene, V. Marinescu, D.G. Negreanu, C. Maxim, M. Popa, L. Marutescu, M. Stan, C. Chifiriuc, Novel hybrid materials based on heteroleptic Ru(III) complexes immobilized on SBA-15 mesoporous silica as highly potent antimicrobial and cytotoxic agents, Applied Surface Science 520 (2020) 146379. https://doi.org/10.1016/j.apsusc.2020.146379.
[100] H.S. Çalık, E. Ispir, Ş. Karabuga, M. Aslantas, Ruthenium (II) complexes of NO ligands: Synthesis, characterization and application in transfer hydrogenation of carbonyl compounds, Journal of Organometallic Chemistry 801 (2016) 122–129. https://doi.org/10.1016/j.jorganchem.2015.10.028.
[101] E. Pahontu, I. Usataia, V. Graur, Y. Chumakov, P. Petrenko, V. Gudumac, A. Gulea, Synthesis, characterization, crystal structure of novel Cu (II), Co (III), Fe (III) and Cr (III) complexes with 2-hydroxybenzaldehyde-4-allyl-S-methylisothiosemicarbazone: Antimicrobial, antioxidant and in vitro antiproliferative activity, Applied Organometallic Chemistry 32 (2018) e4544. https://doi.org/10.1002/aoc.4544.
[102] S. Sangeetha, M. Murali, Cytotoxic Ruthenium(II) Complexes Containing a Dangling Pyridine: Selectivity for Diseased Cells Mediated by pH-Dependent DNA Binding, Inorg. Chem. 61 (2022) 2864–2882. https://doi.org/10.1021/acs.inorgchem.1c03399.
[103] P. Bernhard, D.J. Bull, H.-B. Bürgi, P. Osvath, A. Raselli, A.M. Sargeson, Ligand Dehydrogenation in Ruthenium−Amine Complexes: Reactivity of 1,2-Ethanediamine and 1,1,1-Tris(aminomethyl)ethane, Inorg. Chem. 36 (1997) 2804–2815. https://doi.org/10.1021/ic961021q.
[104] N. Holten-Andersen, T.E. Mates, M.S. Toprak, G.D. Stucky, F.W. Zok, J.H. Waite, Metals and the Integrity of a Biological Coating: The Cuticle of Mussel Byssus, Langmuir 25 (2009) 3323–3326. https://doi.org/10.1021/la8027012.
[105] E. Asenath Smith, W. Chen, How To Prevent the Loss of Surface Functionality Derived from Aminosilanes, Langmuir 24 (2008) 12405–12409. https://doi.org/10.1021/la802234x.
[106] M. Zhu, M.Z. Lerum, W. Chen, How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica, Langmuir 28 (2012) 416–423. https://doi.org/10.1021/la203638g.
[107] C.-M. Chen, Silatrane-Based Molecular Nanolayers as Efficient Diffusion Barriers for Cu/SiO2/Si Heterojunctions: Implications for Integrated Circuit Manufacturing, (2024). https://doi.org/10.1021/acsanm.3c05604.
[108] S. Fan, B. Peng, R. Yuan, D. Wu, X. Wang, J. Yu, F. Li, A novel Schiff base-containing branched polysiloxane as a self-crosslinking flame retardant for PA6 with low heat release and excellent anti-dripping performance, Composites Part B: Engineering 183 (2020) 107684. https://doi.org/10.1016/j.compositesb.2019.107684.
[109] C. Huayao, L. Yueshun, Z. Hongjun, Z. Xinhua, G. Sheng, X. Hua, Highly efficient alginate sodium encapsulated chlorpyrifos/copper(II) Schiff base mesoporous silica sustained release system with pH and ion response for pesticide delivery, RSC Adv. 6 (2016) 114714–114721. https://doi.org/10.1039/C6RA23836J.
[110] Y. Guo, M. Zhang, Z. Liu, X. Tian, S. Zhang, C. Zhao, H. Lu, Modeling and Optimizing the Synthesis of Urea-formaldehyde Fertilizers and Analyses of Factors Affecting these Processes, Sci Rep 8 (2018) 4504. https://doi.org/10.1038/s41598-018-22698-8.
[111] G. Remaud, A.A. Debon, Y. Martin, G.G. Martin, G.J. Martin, Authentication of Bitter Almond Oil and Cinnamon Oil: Application of the SNIF-NMR Method to Benzaldehyde, J. Agric. Food Chem. 45 (1997) 4042–4048. https://doi.org/10.1021/jf970143d.
[112] O. Seitz, P.G. Fernandes, R. Tian, N. Karnik, H.-C. Wen, H. Stiegler, R.A. Chapman, E.M. Vogel, Y.J. Chabal, Control and stability of self-assembled monolayers under biosensing conditions, J. Mater. Chem. 21 (2011) 4384. https://doi.org/10.1039/c1jm10132c.
[113] (18) Effect of Solvents and Concentration on the Formation of a Self-Assembled Monolayer of Octadecylsiloxane on Silicon (001) | Request PDF, ResearchGate (n.d.). https://www.researchgate.net/publication/231674622_Effect_of_Solvents_and_Concentration_on_the_Formation_of_a_Self-Assembled_Monolayer_of_Octadecylsiloxane_on_Silicon_001 (accessed June 5, 2024).
[114] J. Spinke, M. Liley, F.-J. Schmitt, H.-J. Guder, L. Angermaier, W. Knoll, Molecular recognition at self-assembled monolayers: Optimization of surface functionalization, The Journal of Chemical Physics 99 (1993) 7012–7019. https://doi.org/10.1063/1.465447.
[115] Y. Gong, M.C.P. Wang, X. Zhang, H.W. Ng, B.D. Gates, Optimizing the quality of monoreactive perfluoroalkylsilane-based self-assembled monolayers, Langmuir 28 (2012) 11790–11801. https://doi.org/10.1021/la301742s.
[116] G.E. Fryxell, P.C. Rieke, L.L. Wood, M.H. Engelhard, R.E. Williford, G.L. Graff, A.A. Campbell, R.J. Wiacek, L. Lee, A. Halverson, Nucleophilic Displacements in Mixed Self-Assembled Monolayers, Langmuir 12 (1996) 5064–5075. https://doi.org/10.1021/la9506842.
[117] B.C. Bunker, R.W. Carpick, R.A. Assink, M.L. Thomas, M.G. Hankins, J.A. Voigt, D. Sipola, M.P. de Boer, G.L. Gulley, The Impact of Solution Agglomeration on the Deposition of Self-Assembled Monolayers, Langmuir 16 (2000) 7742–7751. https://doi.org/10.1021/la000502q.
[118] D.L. Angst, G.W. Simmons, Moisture absorption characteristics of organosiloxane self-assembled monolayers, Langmuir 7 (1991) 2236–2242. https://doi.org/10.1021/la00058a043.
[119] J.D. Deetz, Q. Ngo, R. Faller, Reactive Molecular Dynamics Simulations of the Silanization of Silica Substrates by Methoxysilanes and Hydroxysilanes, Langmuir 32 (2016) 7045–7055. https://doi.org/10.1021/acs.langmuir.6b00934.
[120] D.K. Aswal, S. Lenfant, D. Guerin, J.V. Yakhmi, D. Vuillaume, Self assembled monolayers on silicon for molecular electronics, Analytica Chimica Acta 568 (2006) 84–108. https://doi.org/10.1016/j.aca.2005.10.027.
[121] J. Spinke, M. Liley, F.-J. Schmitt, H.-J. Guder, L. Angermaier, W. Knoll, Molecular recognition at self-assembled monolayers: Optimization of surface functionalization, The Journal of Chemical Physics 99 (1993) 7012–7019. https://doi.org/10.1063/1.465447.
[122] M.P. Seah, The quantitative analysis of surfaces by XPS: A review, Surf. Interface Anal. 2 (1980) 222–239. https://doi.org/10.1002/sia.740020607.
[123] (18) Chemical composition and bond structure of carbon-nitride films deposited by CH4/N2 dielectric barrier discharge | Request PDF, (n.d.). https://www.researchgate.net/publication/228469842_Chemical_composition_and_bond_structure_of_carbon-nitride_films_deposited_by_CH4N2_dielectric_barrier_discharge (accessed June 5, 2024).
[124] A. Majumdar, G. Das, K.R. Basvani, J. Heinicke, R. Hippler, Role of Nitrogen in the Formation of HC−N Films by CH4/N2 Barrier Discharge Plasma: Aliphatic Tendency, J. Phys. Chem. B 113 (2009) 15734–15741. https://doi.org/10.1021/jp906654m.
[125] B.S. Sahu, A. Kapoor, P. Srivastava, O.P. Agnihotri, S.M. Shivaprasad, Study of thermally grown and photo-CVD deposited silicon oxide–silicon nitride stack layers, Semicond. Sci. Technol. 18 (2003) 670–675. https://doi.org/10.1088/0268-1242/18/7/312.
[126] M. Della Ciana, A. Kovtun, C. Summonte, A. Candini, D. Cavalcoli, D. Gentili, R. Nipoti, C. Albonetti, Native Silicon Oxide Properties Determined by Doping, Langmuir 39 (2023) 12430–12451. https://doi.org/10.1021/acs.langmuir.3c01652.
[127] J. Boudaden, R.S.-C. Ho, P. Oelhafen, A. Schüler, C. Roecker, J.-L. Scartezzini, Towards coloured glazed thermal solar collectors, Solar Energy Materials and Solar Cells 84 (2004) 225–239. https://doi.org/10.1016/j.solmat.2004.02.042.
[128] M.Y. Bashouti, J. Ristein, H. Haick, S. Christiansen, A Non-Oxidative Approach Towards Hybrid Silicon Nanowire- Based Solar Cell Heterojunctions, (2014). https://doi.org/10.2478/hyma-2013-0002.
[129] P.M. Dietrich, S. Glamsch, C. Ehlert, A. Lippitz, N. Kulak, W.E.S. Unger, Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon, Applied Surface Science 363 (2016) 406–411. https://doi.org/10.1016/j.apsusc.2015.12.052.
[130] L. Zhang, N. Kuramoto, A. Kurokawa, XPS Analysis of a 28Si-Enriched Sphere for Realization of the Kilogram, IEEE Transactions on Instrumentation and Measurement 70 (2021) 1–5. https://doi.org/10.1109/TIM.2021.3066190.
[131] N.-Y. Cui, C. Liu, W. Yang, XPS and AFM characterization of the self-assembled molecular monolayers of a 3-aminopropyltrimethoxysilane on silicon surface, and effects of substrate pretreatment by UV-irradiation, Surface and Interface Analysis 43 (2011) 1082–1088. https://doi.org/10.1002/sia.3698.
[132] J.K. Lee, Y.S. Chi, I.S. Choi, Reactivity of Acetylenyl-Terminated Self-Assembled Monolayers on Gold: Triazole Formation, Langmuir 20 (2004) 3844–3847. https://doi.org/10.1021/la049748b.
[133] H. Liu, R.J. Hamers, An X-ray photoelectron spectroscopy study of the bonding of unsaturated organic molecules to the Si(001) surface, Surface Science 416 (1998) 354–362. https://doi.org/10.1016/S0039-6028(98)00507-X.
[134] N.G. Gheorghe, G.A. Lungu, R.M. Costescu, C.M. Teodorescu, Significantly different contamination of atomically clean Si(001) when investigated by XPS and AES, Physica Status Solidi (b) 248 (2011) 1919–1924. https://doi.org/10.1002/pssb.201147220.
[135] S. Contarini, S.P. Howlett, C. Rizzo, B.A. De Angelis, XPS study on the dispersion of carbon additives in silicon carbide powders, Applied Surface Science 51 (1991) 177–183. https://doi.org/10.1016/0169-4332(91)90400-E.
[136] E. Riedo, F. Comin, J. Chevrier, F. Schmithusen, S. Decossas, M. Sancrotti, Structural properties and surface morphology of laser-deposited amorphous carbon and carbon nitride films, Surface and Coatings Technology 125 (2000) 124–128. https://doi.org/10.1016/S0257-8972(99)00591-5.
[137] T.W. Scharf, R.D. Ott, D. Yang, J.A. Barnard, Structural and tribological characterization of protective amorphous diamond-like carbon and amorphous CNx overcoats for next generation hard disks, J. Appl. Phys. 85 (1999) 3142–3154. https://doi.org/10.1063/1.369654.
[138] M. Kibria, F. Zhang, T. Lee, M. Kim, M. Howlader, Comprehensive investigation of sequential plasma activated Si/Si bonded interfaces for nano-integration on the wafer scale, Nanotechnology 21 (2010) 134011. https://doi.org/10.1088/0957-4484/21/13/134011.
[139] P. Bryk, E. Korczeniewski, G.S. Szymański, P. Kowalczyk, K. Terpiłowski, A.P. Terzyk, What Is the Value of Water Contact Angle on Silicon?, Materials 13 (2020) 1554. https://doi.org/10.3390/ma13071554.
[140] C.W. Extrand, Y. Kumagai, An Experimental Study of Contact Angle Hysteresis, Journal of Colloid and Interface Science 191 (1997) 378–383. https://doi.org/10.1006/jcis.1997.4935.
[141] W. Kulisch, C. Popov, D. Gilliland, G. Ceccone, F. Rossi, J.P. Reithmaier, Investigation of the UV/O3 treatment of ultrananocrystalline diamond films, Surface and Interface Analysis 42 (2010) 1152–1155. https://doi.org/10.1002/sia.3264.
[142] Z. Fan, C. Zhi, L. Wu, P. Zhang, C. Feng, L. Deng, B. Yu, L. Qian, UV/Ozone-Assisted Rapid Formation of High-Quality Tribological Self-Assembled Monolayer, Coatings 9 (2019) 762. https://doi.org/10.3390/coatings9110762.
[143] A. Moldovan, F. Feldmann, G. Krugel, M. Zimmer, J. Rentsch, M. Hermle, A. Roth-Fölsch, K. Kaufmann, C. Hagendorf, Simple Cleaning and Conditioning of Silicon Surfaces with UV/Ozone Sources, Energy Procedia 55 (2014) 834–844. https://doi.org/10.1016/j.egypro.2014.08.067.
[144] J. Heo, D. Eom, H.J. Kim, UV-O3 treatment effects on structural changes of low-k thin films, Microelectronic Engineering 84 (2007) 2188–2191. https://doi.org/10.1016/j.mee.2007.04.057.
[145] C.E. Pyo, J.H. Chang, Hydrophobic Mesoporous Silica Particles Modified With Nonfluorinated Alkyl Silanes, ACS Omega 6 (2021) 16100–16109. https://doi.org/10.1021/acsomega.1c01981.
[146] M.-H. Jung, H.-S. Choi, Characterization of octadecyltrichlorosilane self-assembled monolayers on silicon (100) surface, Korean J. Chem. Eng. 26 (2009) 1778–1784. https://doi.org/10.1007/s11814-009-0249-9.
[147] D. Wei, L. Huang, H. Liang, J. Zou, W. Chen, C. Yang, Y. Hou, D. Zheng, J. Zhang, Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO 4 nanorods, Catalysis Science & Technology 11 (2021) 5931–5937. https://doi.org/10.1039/D1CY00890K.
[148] Y.F. Dufrêne, Atomic Force Microscopy, a Powerful Tool in Microbiology, Journal of Bacteriology 184 (2002) 5205–5213. https://doi.org/10.1128/jb.184.19.5205-5213.2002.
[149] D.K. Schwartz, MECHANISMS AND KINETICS OF SELF-ASSEMBLED MONOLAYER FORMATION, Annual Review of Physical Chemistry 52 (2001) 107–137. https://doi.org/10.1146/annurev.physchem.52.1.107.
[150] F.D. Osterholtz, E.R. Pohl, Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review, Journal of Adhesion Science and Technology (1992). https://doi.org/10.1163/156856192X00106.
[151] A.Y. Fadeev, T.J. McCarthy, Self-Assembly Is Not the Only Reaction Possible between Alkyltrichlorosilanes and Surfaces: Monomolecular and Oligomeric Covalently Attached Layers of Dichloro- and Trichloroalkylsilanes on Silicon, Langmuir 16 (2000) 7268–7274. https://doi.org/10.1021/la000471z.
[152] X. Sha, C. Sun, X. Xu, L. Alexander, P.J. Loll, L.S. Penn, Quartz Crystal Microbalance (QCM): Useful for Developing Procedures for Immobilization of Proteins on Solid Surfaces, Anal. Chem. 84 (2012) 10298–10305. https://doi.org/10.1021/ac302275r.
[153] A. Henss, S.-K. Otto, K. Schaepe, L. Pauksch, K.S. Lips, M. Rohnke, High resolution imaging and 3D analysis of Ag nanoparticles in cells with ToF-SIMS and delayed extraction, Biointerphases 13 (2018) 03B410. https://doi.org/10.1116/1.5015957.
[154] H. Nygren, B. Hagenhoff, P. Malmberg, M. Nilsson, K. Richter, Bioimaging TOF-SIMS: High resolution 3D imaging of single cells, Microscopy Research and Technique 70 (2007) 969–974. https://doi.org/10.1002/jemt.20502.
[155] J.M. Lancaster, B.A. Wright, W.W. Wright, Thermal degradation of polymers with aromatic rings in the chain, Journal of Applied Polymer Science 9 (1965) 1955–1971. https://doi.org/10.1002/app.1965.070090527.
[156] R. Katsumata, C. Senger, J. Nicolas Pagaduan, Recent advances and emerging opportunities in rapid thermal annealing (RTA) of polymers, Molecular Systems Design & Engineering 8 (2023) 701–712. https://doi.org/10.1039/D2ME00283C.
[157] A.V. Walker, T.B. Tighe, O.M. Cabarcos, M.D. Reinard, B.C. Haynie, S. Uppili, N. Winograd, D.L. Allara, The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers, J. Am. Chem. Soc. 126 (2004) 3954–3963. https://doi.org/10.1021/ja0395792.
[158] L.V.A. Hale, T. Malakar, K.-N.T. Tseng, P.M. Zimmerman, A. Paul, N.K. Szymczak, The Mechanism of Acceptorless Amine Double Dehydrogenation by N,N,N-Amide Ruthenium(II) Hydrides: A Combined Experimental and Computational Study, ACS Catal. 6 (2016) 4799–4813. https://doi.org/10.1021/acscatal.6b01465.
[159] K. Banerjee, S.J. Souri, P. Kapur, K.C. Saraswat, 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration, Proceedings of the IEEE 89 (2001) 602–633. https://doi.org/10.1109/5.929647.
[160] M. Porter, P. Gerrish, L. Tyler, S. Murray, R. Mauriello, F. Soto, G. Phetteplace, S. Hareland, Reliability considerations for implantable medical ICs, in: 2008 IEEE International Reliability Physics Symposium, 2008: pp. 516–523. https://doi.org/10.1109/RELPHY.2008.4558939.
[161] G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, M. Vitelli, Reliability Issues in Photovoltaic Power Processing Systems, IEEE Transactions on Industrial Electronics 55 (2008) 2569–2580. https://doi.org/10.1109/TIE.2008.924016.
[162] K.M. Latt, Y.K. Lee, T. Osipowicz, H.S. Park, Interfacial reactions and failure mechanism of Cu/Ta/SiO2/Si multilayer structure in thermal annealing, Materials Science and Engineering: B 94 (2002) 111–120. https://doi.org/10.1016/S0921-5107(02)00093-4.
[163] K. Holloway, P.M. Fryer, C. Cabral Jr., J.M.E. Harper, P.J. Bailey, K.H. Kelleher, Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions, Journal of Applied Physics 71 (1992) 5433–5444. https://doi.org/10.1063/1.350566.
[164] V.K. Khanna, Adhesion–delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices, J. Phys. D: Appl. Phys. 44 (2010) 034004. https://doi.org/10.1088/0022-3727/44/3/034004.
[165] S. Balakumar, G. Wong, C. Fo Tsang, T. Hara, W.J. Yoo, Enhancement of adhesion strength of Cu layer on single and multi-layer dielectric film stack in Cu/low k multi-level interconnects, Microelectronic Engineering 75 (2004) 183–193. https://doi.org/10.1016/j.mee.2004.05.003.
[166] S.-Y. Chang, S.-Y. Lin, Y.-C. Huang, C.-L. Wu, Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings, Surface and Coatings Technology 204 (2010) 3307–3314. https://doi.org/10.1016/j.surfcoat.2010.03.041.
[167] G. Nagy, A.V. Walker, Dynamics of the Interaction of Vapor-Deposited Copper with Alkanethiolate Monolayers: Bond Insertion, Complexation, and Penetration Pathways, J. Phys. Chem. B 110 (2006) 12543–12554. https://doi.org/10.1021/jp055040+.
[168] J. Bogan, A. Brady-Boyd, S. Armini, R. Lundy, V. Selvaraju, R. O’Connor, Nucleation and adhesion of ultra-thin copper films on amino-terminated self-assembled monolayers, Applied Surface Science 462 (2018) 38–47. https://doi.org/10.1016/j.apsusc.2018.08.029.
[169] A.S. D’Souza, C.G. Pantano, Hydroxylation and Dehydroxylation Behavior of Silica Glass Fracture Surfaces, Journal of the American Ceramic Society 85 (2002) 1499–1504. https://doi.org/10.1111/j.1151-2916.2002.tb00303.x.
[170] J. Sameshima, R. Maeda, K. Yamada, A. Karen, S. Yamada, Depth profiles of boron and nitrogen in SiON films by backside SIMS, Applied Surface Science 231–232 (2004) 614–617. https://doi.org/10.1016/j.apsusc.2004.03.123.
[171] D.A. Cole, L. Zhang, 10 - Surface Analysis Methods for Contaminant Identification, in: R. Kohli, K.L. Mittal (Eds.), Developments in Surface Contamination and Cleaning, William Andrew Publishing, Norwich, NY, 2008: pp. 585–652. https://doi.org/10.1016/B978-081551555-5.50012-5.
[172] A. Rozenblat, Y. Rosenwaks, L. Segev, H. Cohen, Electrical depth profiling in thin SiON layers, Applied Physics Letters 94 (2009) 053116. https://doi.org/10.1063/1.3073050.
[173] C.C. Parks, Secondary ion mass spectrometry of a copper polyimide thin film packaging technology, Journal of Vacuum Science & Technology A 15 (1997) 1328–1333. https://doi.org/10.1116/1.580584.
[174] K. Sakuma, K. Toriyama, H. Noma, K. Sueoka, N. Unami, J. Mizuno, S. Shoji, Y. Orii, Fluxless bonding for fine-pitch and low-volume solder 3-D interconnections, in: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 2011: pp. 7–13. https://doi.org/10.1109/ECTC.2011.5898483.
[175] E. Delamarche, B. Michel, H. Kang, Ch. Gerber, Thermal Stability of Self-Assembled Monolayers, Langmuir 10 (1994) 4103–4108. https://doi.org/10.1021/la00023a033.
[176] R.K. Smith, P.A. Lewis, P.S. Weiss, Patterning self-assembled monolayers, Progress in Surface Science 75 (2004) 1–68. https://doi.org/10.1016/j.progsurf.2003.12.001.
[177] A. Tzaguy, P. Karadan, K. Killi, O. Hazut, I. Amit, Y. Rosenwaks, R. Yerushalmi, Boron Monolayer Doping: Role of Oxide Capping Layer, Molecular Fragmentation, and Doping Uniformity at the Nanoscale, Advanced Materials Interfaces 7 (2020) 1902198. https://doi.org/10.1002/admi.201902198.
[178] K. Saxena, C.S. Bisaria, A.K. Saxena, Studies on the synthesis and thermal properties of alkoxysilane-terminated organosilicone dendrimers, Applied Organometallic Chemistry 24 (2010) 251–256. https://doi.org/10.1002/aoc.1615.
[179] R.H. Aguirresarobe, L. Irusta, M.J. Fernandez-Berridi, Application of TGA/FTIR to the study of the thermal degradation mechanism of silanized poly(ether-urethanes), Polymer Degradation and Stability 97 (2012) 1671–1679. https://doi.org/10.1016/j.polymdegradstab.2012.06.019.
[180] A. Chandekar, S.K. Sengupta, J.E. Whitten, Thermal stability of thiol and silane monolayers: A comparative study, Applied Surface Science 256 (2010) 2742–2749. https://doi.org/10.1016/j.apsusc.2009.11.020.
[181] E.N. Ermakova, S.V. Sysoev, R.E. Nikolaev, L.D. Nikulina, A.V. Lis, I.P. Tsyrendorzhieva, V.I. Rakhlin, P.E. Plyusnin, M.L. Kosinova, Thermal properties of some organosilicon precursors for chemical vapor deposition, J Therm Anal Calorim 126 (2016) 609–616. https://doi.org/10.1007/s10973-016-5563-y.
[182] I. De Graeve, J. Vereecken, A. Franquet, T. Van Schaftinghen, H. Terryn, Silane coating of metal substrates: Complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties, Progress in Organic Coatings 59 (2007) 224–229. https://doi.org/10.1016/j.porgcoat.2006.09.006.
[183] T. Alphazan, L. Mathey, M. Schwarzwälder, T.-H. Lin, A.J. Rossini, R. Wischert, V. Enyedi, H. Fontaine, M. Veillerot, A. Lesage, L. Emsley, L. Veyre, F. Martin, C. Thieuleux, C. Copéret, Monolayer Doping of Silicon through Grafting a Tailored Molecular Phosphorus Precursor onto Oxide-Passivated Silicon Surfaces, Chem. Mater. 28 (2016) 3634–3640. https://doi.org/10.1021/acs.chemmater.5b04291.
[184] J.C. Ho, R. Yerushalmi, Z.A. Jacobson, Z. Fan, R.L. Alley, A. Javey, Controlled nanoscale doping of semiconductors via molecular monolayers, Nature Mater 7 (2008) 62–67. https://doi.org/10.1038/nmat2058.
[185] C. Zhang, S. Chang, Y. Dan, Advances in ultrashallow doping of silicon, Advances in Physics: X 6 (2021) 1871407. https://doi.org/10.1080/23746149.2020.1871407.
[186] O. Seitz, A. Vilan, H. Cohen, J. Hwang, M. Haeming, A. Schoell, E. Umbach, A. Kahn, D. Cahen, Doping Molecular Monolayers: Effects on Electrical Transport Through Alkyl Chains on Silicon, Advanced Functional Materials 18 (2008) 2102–2113. https://doi.org/10.1002/adfm.200800208.
[187] X. Huang, V. Sukharev, Z. Qi, T. Kim, S.X.-D. Tan, Physics-based full-chip TDDB assessment for BEOL interconnects, in: Proceedings of the 53rd Annual Design Automation Conference, Association for Computing Machinery, New York, NY, USA, 2016: pp. 1–6. https://doi.org/10.1145/2897937.2898062.
[188] Y. Yamaguchi, M. Kondo, H. Yamagishi, Y. Owada, Reliability testing device of semiconductor device, (1988). https://www.osti.gov/etdeweb/biblio/6377808 (accessed July 7, 2024).
[189] M. Fukuda, Optical semiconductor device reliability, Microelectronics Reliability 42 (2002) 679–683. https://doi.org/10.1016/S0026-2714(02)00022-7.
[190] C. Schlünder, Device reliability challenges for modern semiconductor circuit design – a review, Advances in Radio Science 7 (2009) 201–211. https://doi.org/10.5194/ars-7-201-2009.
[191] U. Schmelmer, A. Paul, A. Küller, M. Steenackers, A. Ulman, M. Grunze, A. Gölzhäuser, R. Jordan, Nanostructured Polymer Brushes, Small 3 (2007) 459–465. https://doi.org/10.1002/smll.200600528.
[192] Y.-K. Hong, H. Yu, T.G. Lee, N. Lee, J.H. Bahng, N.W. Song, W. Chegal, H.K. Shon, J.-Y. Koo, Highly-ordered self-assembled monolayer of alkanethiol on thermally annealed polycrystalline gold films, Chemical Physics 428 (2014) 105–110. https://doi.org/10.1016/j.chemphys.2013.10.019.