研究生: |
沈辰翰 Shen, Chen-Han |
---|---|
論文名稱: |
基於手持式裝置之手部副木客製化設計 Customized Design of Hand Splint using Hand Held Devices |
指導教授: |
瞿志行
Chu, Chih-Hsing |
口試委員: |
劉倩秀
Liu, Chien-Hsiou 王怡然 Wang, I-Jan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 手持式裝置 、手部副木設計 、三維掃描 、電腦輔助設計 、點雲配準 、自由變形技術 |
外文關鍵詞: | Hand Held Device, Hand Splint Design, 3D Scanning, Computer-Aided Design, Cloud Registration, Free-Form Deformation |
相關次數: | 點閱:40 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著使用手機時間越來越長,容易造成大拇指附近的軟組織及關節受損,引發拇指腕掌關節炎,手部副木(Splint)為一種有效的職能治療方式,通常依據治療師的經驗調整副木形狀,缺乏較科學化設計流程或評估方式。本研究開發手部副木客製化設計系統,使用手持式裝置進行三維掃描,透過光學雷達(Light Detection and Ranging, LiDAR)取得深度資料,藉此建立患者三維手模。根據其彩色影像,驅動深度學習模型,產生近似手模與關節點,經由點雲配準演算法,疊合掃描與近似手模,賦予掃描模型關節點資訊,做為副木設計參考依據。接著,經由電腦輔助設計軟體自動生成三維副木模型,在手持式裝置介面上呈現其穿戴效果,並計算副木與手模之間距離,依此渲染成不同顏色,協助評估其設計品質,避免副木與手部相交或縫隙過大。此外結合自由變形技術(Free-Form Deformation, FFD),提供即時性副木幾何的調整,實現高度客製化功能。以三維列印製作出副木原型,由不同受試者實際穿戴,進行手部靈活度與握力測試合併肌電圖量測,客觀評估對手部動作靈活度與保護性,並進行日常活動感受穿戴舒適度,驗證客製化功能的有效性。本研究整合手持式裝置與多種資通訊技術,實現手部副木之創新性設計概念,改善職能治療復健的服務品質。
Prolonged mobile phone use can easily injury the soft tissues and joints near the thumb, leading to thumb carpometacarpal osteoarthritis (TCO). Splints are an effective occupational therapy method for treating TCO, but their design is traditionally based on the therapist’s experience rather than a rigorous process. To address this issue, this study develops a customized hand splint design system using information technology deployed on a handheld device. A patient's 3D hand model is constructed by 3D scanning using the Light Detection and Ranging (LiDAR) functions of the handheld device. A similar hand model of the patient containing 3D joint points is then generated from a color image using deep learning techniques. The joint points are integrated into the scanned model through 3D registration with the deep learning-generated model. They serve as a reference for designing splints customized for each individual. Next, a 3D splint model, automatically created using a CAD tool on the server side, is transmitted back to the handheld device over a wireless network. The splint model is geometrically overlaid onto the scanned hand model for display and evaluation purposes. The distance between the splint and hand models is calculated for each mesh point and rendered in different colors based on proximity. The visualization results enable the evaluation of the splint design quality by preventing intersections or excessive allowances with respect to the patient's hand. The system also allows real-time adjustment of the splint geometry for improving design quality. Finally, 3D-printed splint prototypes are created and tested by subjects to evaluate hand dexterity and perform grip strength tests with EMG measurements. The results help evaluate the flexibility, protection, and comfort of the splints during daily activities, thereby validating the customized design system. In summary, this study integrates handheld devices with various information and communication technologies to create an innovative design process for customized hand splints, enhancing the quality of occupational therapy and rehabilitation services.
[1] Eapen, C., Kumar, B., Bhat, A. K., & Venugopal, A. (2018). Clinical and ultrasonic evaluation of the thumb: Comparison of young adults with and without thumb pain with text messaging. Journal of manipulative and physiological therapeutics, 41(3), 199-207.
[2] Dahaghin, S., Bierma-Zeinstra, S. M., Ginai, A., Pols, H., Hazes, J., & Koes, B. (2005). Prevalence and pattern of radiographic hand osteoarthritis and association with pain and disability (the Rotterdam study). Annals of the rheumatic diseases, 64(5), 682-687.
[3] Marotta, N., Demeco, A., Marinaro, C., Moggio, L., Pino, I., Barletta, M., Petraroli, A., & Ammendolia, A. (2021). Comparative effectiveness of orthoses for thumb osteoarthritis: a systematic review and network meta-analysis. Archives of Physical Medicine and Rehabilitation, 102(3), 502-509.
[4] Grenier, M.-L., Mendonca, R., & Dalley, P. (2016). The effectiveness of orthoses in the conservative management of thumb CMC joint osteoarthritis: an analysis of functional pinch strength. Journal of Hand Therapy, 29(3), 307-313.
[5] Jacobs, M. A., Austin, N. M., & Austin, N. M. (2013). Orthotic intervention for the hand and upper extremity: splinting principles and process. Lippincott Williams & Wilkins.
[6] Górski, F., Zawadzki, P., Wichniarek, R., Kuczko, W., Żukowska, M., Wesołowska, I., & Wierzbicka, N. (2020). Automated design of customized 3D-printed wrist orthoses on the basis of 3D scanning. Computational and Experimental Simulations in Engineering: Proceedings of ICCES2019 24,
[7] Baronio, G., Volonghi, P., & Signoroni, A. (2017). Concept and design of a 3D printed support to assist hand scanning for the realization of customized orthosis. Applied bionics and biomechanics, 2017.
[8] Chen, Y.-J., Lin, H., Zhang, X., Huang, W., Shi, L., & Wang, D. (2017). Application of 3D–printed and patient-specific cast for the treatment of distal radius fractures: initial experience. 3D Printing in Medicine, 3, 1-9.
[9] Guida, P., Casaburi, A., Busiello, T., Lamberti, D., Sorrentino, A., Iuppariello, L., D’Albore, M., Colella, F., & Clemente, F. (2019). An alternative to plaster cast treatment in a pediatric trauma center using the CAD/CAM technology to manufacture customized three-dimensional-printed orthoses in a totally hospital context: a feasibility study. Journal of Pediatric Orthopaedics B, 28(3), 248-255.
[10] Chu, C.-H., Wang, I.-J., Sun, J.-R., & Liu, C.-H. (2022). Customized designs of short thumb orthoses using 3D hand parametric models. Assistive Technology, 34(1), 104-111.
[11] Al-Dulimi, Z., Wallis, M., Tan, D. K., Maniruzzaman, M., & Nokhodchi, A. (2020). 3D printing technology as innovative solutions for biomedical applications. Drug Discovery Today, 26(2), 360-383.
[12] Choo, Y. J., Boudier-Revéret, M., & Chang, M. C. (2020). 3D printing technology applied to orthosis manufacturing: narrative review. Ann. Palliat. Med, 9(6), 4262-4270.
[13] Mohammed, M. I., & Fay, P. (2018). Design and additive manufacturing of a patient specific polymer thumb splint concept. 2018 International Solid Freeform Fabrication Symposium,
[14] Kim, S. J., Kim, S. J., Cha, Y. H., Lee, K. H., & Kwon, J.-Y. (2018). Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: a preliminary, randomized, controlled, open-label study. Prosthetics and orthotics international, 42(6), 636-643.
[15] 王怡然 (2018),三維人體計測資料參數化模型與個人化產品設計驗證,清華大學工業工程與工程管理學系,博士論文。
[16] Zhao, J. Z., Blazar, P. E., Mora, A. N., & Earp, B. E. (2020). Range of motion measurements of the fingers via smartphone photography. Hand, 15(5), 679-685.
[17] Cercenelli, L., Babini, F., Badiali, G., Battaglia, S., Tarsitano, A., Marchetti, C., & Marcelli, E. (2022). Augmented reality to assist skin paddle harvesting in osteomyocutaneous fibular flap reconstructive surgery: a pilot evaluation on a 3D-printed leg phantom. Frontiers in Oncology, 11, 804748.
[18] Sederberg, T. W., & Parry, S. R. (1986). Free-form deformation of solid geometric models. Proceedings of the 13th annual conference on Computer graphics and interactive techniques,
[19] Yu, Z., Huang, S., Fang, C., Breckon, T. P., & Wang, J. (2023). ACR: Attention Collaboration-based Regressor for Arbitrary Two-Hand Reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
[20] Romero, J., Tzionas, D., & Black, M. J. (2022). Embodied hands: Modeling and capturing hands and bodies together. arXiv preprint arXiv:2201.02610.
[21] Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. Proceedings third international conference on 3-D digital imaging and modeling,
[22] Zhou, Q.-Y., Park, J., & Koltun, V. (2016). Fast global registration. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14,
[23] Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast point feature histograms (FPFH) for 3D registration. 2009 IEEE international conference on robotics and automation,
[24] Tiffin, J., & Asher, E. J. (1948). The Purdue Pegboard: norms and studies of reliability and validity. Journal of applied psychology, 32(3), 234.
[25] Mao, H.-F., Chen, W.-Y., Yao, G., Huang, S.-L., Lin, C.-C., & Huang, W.-N. W. (2010). Cross-cultural adaptation and validation of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): the development of the Taiwanese version. Clinical Rehabilitation, 24(5), 412-421.
[26] Jacobs, M. A., Austin, N., & Austin, N. M. (2003). Splinting the hand and upper extremity: principles and process. Lippincott Williams & Wilkins.