研究生: |
鐘賢文 Hsien-Wen Chung |
---|---|
論文名稱: |
利用射頻磁控鍍法研製鋯鈦酸鉛/鋯酸鉛異質多層膜 Fabricated PZT(40/60)/PZO Hetero-Multilayers Using Radio Frequency Magnetron Sputtering Method |
指導教授: | 林樹均 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 鋯鈦酸鉛多層膜 、射頻磁控濺鍍 、鐵電陶瓷薄膜 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以射頻磁控濺鍍法鍍製 PZT(40/60)/PZO 異質多層膜,設計出不同週期數之等比例多層膜,以及兩材料不同厚度比例的非等比例多層膜,探討各種結構的結晶行為介電特性、漏電流性質、鐵電特性及抗疲勞特性。實驗所使用的基板為 Pt/Ti/SiO2/Si;以PZT(40/60) 當作第一層,可有效降低其上之 PZO 鈣鈦礦相結晶溫度,同時此成分具有優良的鐵電性及介電性;而 PZO 則具有極佳的抗疲勞性,可改善異質多層膜應用在白金電極上的疲勞性質。
在等比例多層膜方面,當週期數為1時,呈現反鐵電性質;週期數大於2之後的結構,則以鐵電性為主,且隨著週期數增加鐵電性愈佳;推測原因與界面有適當的擴散反應而形成具有鐵電性的介面。等比例多層膜在經過10的9次方反轉後,均無發生疲勞現象;介電常數隨著週期數的增加而上升,其值大於理論上兩材料電容串聯。當週期數達到6時,有本組實驗最佳鐵電性及介電性質。漏電流方面,等比例多層膜的各個條件均比 PZT(40/60) 單層膜來得小,應該與 PZO 具有較佳的抗漏電性而使薄膜整體的漏電流降低。
在非等比例多層膜方面,鍍膜週期數均為6;當dPZT : dPZO = 3:1時雖有最大的殘留極化量,但其經過106反轉就發生疲勞;而以dPZT : dPZO = 2:1的結構,可同時擁有很不錯的鐵電性、介電性,其介電值在1MHz頻率下為494,而 Pr、Ec 值分別為19.35 μC/cm2、49.17 kV/cm,而且經過10的9次方反轉後,其( P* - P^ )還保有初始值的90 %以上,達16.48 μC/cm2,為本實驗最佳參數,提高了 PZT 鐵電薄膜應用於白金電極上的可行性。
1.李雅明, 吳世全, 陳宏名, “ 鐵電記憶元件 ”, 記憶體積體電路, 2, (1996), 68.
2.陳登元, “強介電記憶體之設計原理”, 工業材料, 107, (1995), 61.
3.A. J. Moulson and J. M. Herbert, “Electroceramics: Materials, Properties, Applications”, Chapman & Hall, (1990).
4.J. F. Scott, “Ferroelectric Memories”, Springer, (2000) 6.
5.B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics”, R.A.N., (1971) 123.
6.吳朗, “電子陶瓷-壓電陶瓷”, 全新科技, (1994) 113.
7.T. Tani, and J. F. Li, “Antiferroelectric-Ferroelectric Switching and Induced Strains for Sol-Gel Derived Lead Zirconate Thin Layers”, J. Appl. Phys., 75(6), (1994) 3017.
8.K. Dimmler, M. Parris, D, Butler, and S. Eaton, “Switching Kinetics in KNO3 Ferroelectric Thin Film Memories”, J. Appl. Phys., 61(12), (1987) 5467.
9.K. Sreenivas, I. Reaney, T. Maeder, and N. Setter, “Investigation of Pt/Ti Bilayer Metallization on Silicon for Ferroelectric Thin Film Integration”, J. Appl. Phys., 75(1), (1994) 232.
10.L. A. Bursill, I. M. Reany, D. P. Vijay, and S. B. Desu, “Comparison of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Plantinum Electrodes”, J. Appl. Phys., 75(3), (1994) 1521.
11.H. Maiwa, N. Ichinose, and K. Okazaki, “Preparation and Properties of Ru and RuO2 Thin Film Electrodes for Ferroelectric Thin Films”, Jpn. J. Appl. Phys., 33(9B), (1994) 5223.
12.H. N. Al-Shareef, A. I. Kington, X. Chen, and K. R. Bellur, “Contribution of Electrodes and Microstructures to the Electrical Properties of Pb(Zr0.53Ti0.47)O3 Thin film Capacitors”, J. Mat. Res., 9(11), (1994) 2968.
13.J. T. Cheung, P. E. D. Morgan, D. H. Lowndes, X-Y Zheng, and J. Breen, “Structure and Electrical Properties of La0.5Sr0.5CoO3 Epitaxial Films”, Appl. Phys. Lett., 62(17), (1993) 2045.
14.R. Dat, D. J. Lichtenwanler, O. Auciello, and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/Pb(Zr0.53Ti0.47)O3/La0.5Sr0.5CoO3 Ferroelectric Capacitor on Platinized Silicon with NO Polarization Fatigue”, Appl. Phys. Lett., 64(20), (1994) 2673.
15.T. B. Wu, J. M. Wu, C. M. Wu, M. J. Shyu, M. S. Chen, and J. S. Dong, “Effects of Sputter-Deposited LaNiO3 Electrode on the Deposition and Properties of Ferroelectric thin Films”, Mat. Res. Soc. Symp. Proc., 433 (1996) 169.
16.M. S. Chen, T. B. Wu, and J. M. Wu, “Effects of Textured LaNiO3 Electrode on the Fatigue Improvement of Pb(Zr0.53Ti0.47)O3 Thin Films”, Appl. Phys. Lett., 66 (1996) 1430.
17.W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasy, and G. E. Pike, “Electronic Domain Pinning in Pb(Zr,Ti)O3 Thin Films and Its Role in Fatigue”, Appl. Phys. Lett., 65 (1994) 1018.
18.R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic Publishers, (1997) 202.
19.W. Pan, C. F. Yue, and S. Sun, “Domain Orientation Change Induced by Ferroelectric Fatigue Process in Lead Zirconate Titanate Ceramics”, University Sandia Research Proposal Grants, P97-102.
20.T. Mihara, H. Watanabe, and Carlos A. Paz De Araujo, “Polarization Fatigue Characteristic Pb(Zr0.4Ti0.6)O3 Thin Films Capacitor”, Jpn. J. Appl. Phys., 33 (1994) 3996.
21.Q.Jiang, W. Cao and L. Eric Cross, “Electric Fatigue in Lead Zirconate Titanate”, J. Am. Ceram. Soc, 77 (1994) 211.
22.D. J. Johnson, D. T. Amw. E. Griswold, K. Sreenivas, G. Yi. and M. Sayer, “Measuring Fatigue in PZT Thin Films”, Mat. Res. Soc. Symp. Proc., 200 (1990) 289.
23.C. K. Kwok and S. B. Desu, “Low Temperature Perovskite Formation of Lead Zirconate Titanate Thin films by a Seeding Process”, J. Mater. Res., 8(2), (1993) 229.
24.H. Suzuki, S. Kaneko, K. Murakami and T. Hayashi, “Low- Temperature Processing of Highly Oriented Pb(ZrxTi1-x)O3 Thin Film With Multi-Seeding Layers”, Jpn. J. Appl. Phys., 36(9B), (1997) 5803.
25.T. L. Ren, L. T. Zhang, L. T. Liu, and Z. J. Li, “Silicon-based PbTiO3/Pb(Zr,Ti)O3 Sandwich Structure”, Jpn. J. Appl. Phys., 40, (2001) 2363.
26.S. G. Lee, K. T. Shin and Y. H. Lee, “Preparation and Characterization of Lead Zirconate Titanate Heterolayered Thin Films on Pt/Ti/SiO2/Si Substrate by Sol-Gel Method”, Jpn. J. Appl. Phys., 38 (1999) 217.
27.S. G. Lee, I. G. Park, S. G. Bae, and Y. H. Lee, “Dielectric Properties of Pb(Zr,Ti)O3 Heterolayered Films Prepared by Sol-Gel Method”, Jpn. J. Appl. Phys., 36 (1997) 6880.
28.S. G. Lee and Y. H. Lee, “Dielectric Properties of Sol-Gel Derived PZT(40/60)/PZT(60/40) Heterolayered Thin Films”, Thin Solid Films, 353 (1999) 244.
29.S. G. Lee, K. T. Kim, and Y. H. Lee, “Characterization of Lead Zirconate Titanate Heterolayered thin Films Prepared on Pt/Ti/SiO2/Si Substrate by the Sol-Gel Method”, Thin Solid Films, 372 (2000) 45.
30.J. H. Jang and K. H. Yoon, “Electric Fatigue Properties of Sol-Gel- Derived Pb(Zr,Ti)O3/PbZrO3 Multilayered Thin Films”, Appl. Phys. Lett., 75 (1999) 130.
31.J. H. Jang, K. H. Yoon and K. Y. Oh, “Electrical Fatigue of Ferroelectric Pb(Zr0.5Ti0.5)O3 and Antiferroelectric PbZrO3 thin films”, Mater. Res. Bull., 35 (2000) 393.
32.S. Paik and S. Komarneni, “Sol-Gel Fabrication of Nanocomposites: Alternate Thin layers of PbTiO3 and PbZrO3”, Mater. Res. Bull., 32 (8), (1997) 1091.
33.L. H. Chang and W. A. Anderson, “Single and Multiplayer Ferroelectric Pb( ZrxTi1-x )O3( PZT ) on BaTiO3”, Thin Solid Films, 303 (1997) 94.
34.I. Kanno, S. Hayashi, R. Takayama, T. Hirao, “Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering”, Appl. Phys. Lett. 68 (3), (1996) 328.
35.A. J. Moulson and J. M. Herbert, “Electroceramics: Materials, Properties, Applications”, Chapman & Hall, (1990) P247.
36.S. Aggarwal, S. Madhukar, B. Nagaraj, I. G. JenKins, and R. Ramesh, “Can Lead Nonstoichiometry Influence Ferroelectric Properties of Pb(Zr,Ti)O3 Thin Films?”, Appl. Phys. Lett., 75(5), (1999) 716.
37.W. L. Warren, G. E. Pike, D. Dimos, K. Vanheusden, H. N. Al-Shareef, and B. A. Tuttle, “Voltage Shift and Defect-Dipoles in Ferroelectric Capacitors”, Mat. Res. Soc. Symp. Proc., 433 (1996) 257.
38.I. Kanno, S. Hayashi, R. Takayama, and T. Hirao, “Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering”, Appl. Phys. Lett. 68 (3), (1996) 328.
39.R. Ramesh, “Thin Film Ferroelectroic Materials and Devices”, Kluwer Academic (1997) 204.