簡易檢索 / 詳目顯示

研究生: 瓦 奇
Karapala, Vamsi Krishna
論文名稱: 創新性高效率串連合成具有3號位和2及4號位取代之碲、硒雜芳香環化合物
Unprecedented, Cascade and Effective Syntheses of 3-Substituted and 2,4-Disubstituted Tellurophenes and Selenophenes
指導教授: 韓建中
Han, Chien-Chung
口試委員: 陳貴通
Tan, Kui-Thong
蔡易州
Tsai, Yi-Chou
許銘華
Hsu, Ming-Hua
李志聰
Lee, Jyh-Tsung
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 342
中文關鍵詞: 碲雜芳香環化合物硒雜芳香環化合物
外文關鍵詞: Tellurophenes, Selenophenes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 迄今,由於製備重硫族吩 (硒吩及碲吩)之已知方法不易及困難,如何能有效的合成出重硫族吩仍是一尚未被廣泛探索的領域。論文首先詳述以2-乙炔基-2-烷基環氧乙烷為骨架合成含3號位取代的碲吩;接著,以另一骨架1,1-二溴-1-烯-3-炔含3號位及2和4號位取代的碲吩及硒吩,最後則以系統性回顧近十年以碲吩為主題的文獻作結。
    論文第一章節簡介重硫族吩的歷史脈絡及提供和本論文研究相關的背景介紹。第二章節敘述系統性製備含3號位及2和4號位取代的碲吩及硒吩。透過一系列串聯反應,從還原脫溴、碲氫化、親核環化到芳香化,含各式取代的1,1-二溴-1-烯-3-炔以對應的硫族鹽類被溫和且高產率地轉化為單取代及雙取代的碲吩及硒吩。實驗結果顯示在反應中生成之碲鹽的反應性強烈地被溶劑系統極性及烯炔反應物上的取代基的電子性質影響。本方法為第一個報導在室溫下能保有高產率並得到3-芳基碲吩的研究,且為一個可得到多取代碲吩及硒吩的甚佳路徑。


    With very limited and difficult synthetic routes for making heavier chalcogenophenes (selenophenes and tellurophenes), effective synthesis of heavier chalcogenophenes is a largely unexplored area of interest. This thesis details firstly systematic approach to synthesize 3-substituted tellurophenes from 2-ethynyl-2-alkyloxiranes. Secondly, synthetic approaches to 3-substituted and 2,4-di-substituted tellurophenes and selenophenes from various 1,1-dibromo-1-en-3-ynes. Finally, well organized literature survey of tellurophenes in this decade.
    The first chapter provides an introduction to the history of the field of heavier chalcogenophenes as well as context for the work presented in this thesis. The second chapter describes a systematic approach to synthesize 3-substituted and 2,4-substitued tellurophenes and selenophenes. Substituted 1,1-dibromo-1-en-3-ynes are smoothly converted to mono- and di-substituted tellurophenes and selenophenes with the corresponding chalcogenide salts in high yields via a series of cascade reactions through reductive debromination, hydrotelluration, nucleophilic cyclization, and aromatization. Close inspection of the results clearly showed that the reactivity of in situ prepared telluride salts is significantly influenced by the polarity of the solvents and the electronic nature of the substituent on the enyne substrate. This method reports the first direct synthesis of 3-aryltellurophenes in high yields at room temperature. This novel reaction strategy is also found to be a promising synthetic method for multisubstituted tellurophenes and selenophenes.

    Table of Contents Abstract i Abstract (Chinese) ii Acknowledgements iii Table of Contents iv List of Tables vii List of Schemes viii List of Figures ix List of Appendices x List of Abbreviations xi Chapter 1: Overview of Heavier Chalcogenophenes (Selenophenes and Tellurophenes) 1 1.1 Introduction 1 1.2 Structure and Bonding in Chalcogenophenes 1 1.3 Spectroscopy of Chalcogenophenes 4 1.3.1 Vibrational Spectroscopy 4 1.3.2 1H NMR Spectroscopy 5 1.3.3 13C NMR Spectroscopy 6 1.3.4 77Se and 125Te NMR Spectroscopy 7 1.4 Effect of Heavier Chalcogenophenes 7 1.4.1 Optoelectronic Properties 7 1.4.2 Biological Properties 13 1.5 Thesis Scope 14 1.6 References 15 Chapter 2: Synthesis of Functionalized Heavier Chalcogenophenes 17 2.1 Introduction 17 2.1.1 Existing Synthetic Routes to Tellurophenes 17 2.2 Results and Discussion 22 2.2.1 Synthesis of 3-Substituted Tellurophenes 22 2.2.2 Mechanistic Rationalization for 3-Substituted Tellurophenes 29 2.2.3 Substrate Scope Study for 3-Substituted Tellurophenes 30 2.2.4 Synthesis of 2,4-Substituted Tellurophenes 33 2.2.5 Substrate Scope Study for 2,4-Substituted Tellurophenes 35 2.2.6 Mechanistic Implications for Substituted Tellurophenes 40 2.2.7 DFT Calculations 41 2.2.8 Synthesis of Substituted Selenophenes 43 2.3 Conclusions 45 2.4 Experimental Section 45 2.4.1 General Information 45 2.4.2 Synthesis and Analytical Data of 2-Ethynyl-2-alkyloxiranes 46 2.4.3 Synthesis and Analytical Data of 1,1-Dibromo-1-en-3-ynes 50 2.4.4 Synthesis and Analytical Data of 3-Substituted Tellurophenes 60 2.4.5 Synthesis and Analytical Data of 2,4-Disubstituted Tellurophenes 66 2.4.6 Synthesis and Analytical Data of Substituted Selenophenes 75 2.5 References 79 Chapter 3: Preface 81 Chapter 3: Review of Tellurophenes 82 3.1 Introduction 82 3.2 Theoretical Methods 82 3.3 Experimental Structural Methods 87 3.3.1 Molecular Structure 87 3.3.2 Molecular Spectroscopy 91 3.4 Thermodynamic Aspects 100 3.5 Reactivity 104 3.5.1 Thermal and Photochemical Reactions 104 3.5.2 Substitutions at Tellurium 106 3.5.3 Electrophilic Substitutions 108 3.5.4 Reactions with C-Anion Equivalents 109 3.5.5 Organometallic Reactions 112 3.5.6 Reactivity of Substituents Attached to Ring Carbon Atoms 117 3.5.7 Microwave Reactions 118 3.5.8 Polymerization Reactions 118 3.5.9 Extrusion of Tellurium 123 3.6 Ring Synthesis 124 3.6.1 Ring Synthesis from Acyclic Compounds 124 3.6.2 Ring Synthesis from Cyclic Compounds 130 3.7 Important Compounds and Applications 131 3.7.1 Compounds with Applications in Biological Science 131 3.7.2 Compounds with Applications in Material Science 132 3.8 References 135 Appendix A: NMR Spectra 140 Appendix B: Mass Spectra 273 Appendix C: Crystal Structure Data 327

    Chapter 1

    (1) Bird, C. W.; Cheeseman, G. W. H.; Hörnfeldt, A. B. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984.
    (2) Magdesieva, N. N. In Adv. Heterocycl. Chem.; Katritzky, A. R., Boulton, A. J., Eds.; Academic Press, 1970; Vol. 12.
    (3) Christiaens, L. E. E. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996.
    (4) Pelkey, E. T. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford, 2008.
    (5) Bak, B.; Christensen, D.; Hansen-Nygaard, L.; Rastrup-Andersen, J. J. Mol. Spectrosc. 1961, 7, 58-63.
    (6) Alparone, A. J. Chem. 2013, 2013, 8.
    (7) Alparone, A. J. Quant. Chem. 2014, 2014, 8.
    (8) Cook, M. J.; Katritzky, A. R.; Linda, P. In Adv. Heterocycl. Chem.; Katritzky, A. R., Boulton, A. J., Eds.; Academic Press, 1974; Vol. 17.
    (9) Fringuelli, F.; Marino, G.; Taticchi, A. In Adv. Heterocycl. Chem.; Katritzky, A. R., Boulton, A. J., Eds.; Academic Press, 1977; Vol. 21.
    (10) Rico, M.; Orza, J. M.; Morcillo, J. Spectrochim. Acta 1965, 21, 689-719.
    (11) Santucci, A.; Paliani, G.; Cataliotti, R. S. Spectrochim. Acta Part A: Mol. Spectrosc. 1985, 41, 679-685.
    (12) Santucci, A.; Paliani, G.; Cataliotti, R. S. Chem. Phys. Lett. 1987, 138, 244-249.
    (13) Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422-433.
    (14) Li, Y. Acc. Chem. Res. 2012, 45, 723-733.
    (15) Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
    (16) Zhou, H.; Yang, L.; You, W. Macromolecules 2012, 45, 607-632.
    (17) Li, Y.; Sonar, P.; Murphy, L.; Hong, W. Energy Environ. Sci., 2013, 6, 1684-1710.
    (18) Saadeh, H. A.; Lu, L.; He, F.; Bullock, J. E.; Wang, W.; Carsten, B.; Yu, L. ACS Macro Lett. 2012, 1, 361-365.
    (19) Shahid, M.; Ashraf, R. S.; Huang, Z.; Kronemeijer, A. J.; McCarthy-Ward, T.; McCulloch, I.; Durrant, J. R.; Sirringhaus, H.; Heeney, M. J. Mater. Chem. 2012, 22, 12817-12823.
    (20) Kim, B.; Yeom, H. R.; Yun, M. H.; Kim, J. Y.; Yang, C. Macromolecules 2012, 45, 8658-8664.
    (21) Dou, L.; Chang, W.-H.; Gao, J.; Chen, C.-C.; You, J.; Yang, Y. Adv. Mater. 2013, 25, 825-831.
    (22) Earmme, T.; Hwang, Y.-J.; Murari, N. M.; Subramaniyan, S.; Jenekhe, S. A. J. Am. Chem. Soc. 2013, 135, 14960-14963.
    (23) Wang, D. H.; Pron, A.; Leclerc, M.; Heeger, A. J. Adv. Funct. Mater. 2013, 23, 1297-1304.
    (24) Salzner, U.; Lagowski, J. B.; Pickup, P. G.; Poirier, R. A. Synth. Met. 1998, 96, 177-189.
    (25) He, G.; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson, M. J.; McDonald, R.; Rivard, E. J. Am. Chem. Soc. 2013, 135, 5360-5363.
    (26) Lapkowski, M.; Motyka, R.; Suwiński, J.; Data, P. Macromol. Chem. Phys. 2012, 213, 29-35.
    (27) Jahnke, A. A.; Djukic, B.; McCormick, T. M.; Buchaca Domingo, E.; Hellmann, C.; Lee, Y.; Seferos, D. S. J. Am. Chem. Soc. 2013, 135, 951-954.
    (28) Liu, W.-X.; Yan, F.; Qian, S.-L.; Ye, J.-Y.; Liu, X.; Yu, M.-X.; Wu, X.-H.; Le, M.-L.; Zhou, Z.-Y.; Liu, S.-H.; Low, P. J.; Jin, S. Eur. J. Inorg. Chem. 2017, 2017, 5015-5026.
    (29) Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.; Schroeder, B. C.; Holliday, S.; Hurhangee, M.; Nielsen, C. B.; Sirringhaus, H.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 1314-1321.
    (30) Jung, E. H.; Bae, S.; Yoo, T. W.; Jo, W. H. Polym. Chem. 2014, 5, 6545-6550.
    (31) Mahrok, A. K.; Carrera, E. I.; Tilley, A. J.; Ye, S.; Seferos, D. S. Chem. Comm. 2015, 51, 5475-5478.
    (32) Patra, A.; Wijsboom, Y. H.; Leitus, G.; Bendikov, M. Org. Lett. 2009, 11, 1487-1490.
    (33) Planells, M.; Schroeder, B. C.; McCulloch, I. Macromolecules 2014, 47, 5889-5894.
    (34) Park, H.; Edgar, L. J.; Lumba, M. A.; Willis, L. M.; Nitz, M. Org. Biomol. Chem. 2015, 13, 7027-7033.
    (35) Edgar, L. J.; Vellanki, R. N.; McKee, T. D.; Hedley, D.; Wouters, B. G.; Nitz, M. Angew. Chem., Int. Ed. 2016, 55, 13159-13163.
    (36) Lumba, M. A.; Willis, L. M.; Santra, S.; Rana, R.; Schito, L.; Rey, S.; Wouters, B. G.; Nitz, M. Org. Biomol. Chem. 2017, 15, 6388-6392.
    (37) Willis, L. M.; Park, H.; Watson, M. W. L.; Majonis, D.; Watson, J. L.; Nitz, M. Cytometry Part A 2018, 93, 685-694.

    Chapter 2

    (1) Edgar, L. J.; Vellanki, R. N.; McKee, T. D.; Hedley, D.; Wouters, B. G.; Nitz, M. Angew. Chem., Int. Ed. 2016, 55, 13159-13163.
    (2) Park, H.; Edgar, L. J.; Lumba, M. A.; Willis, L. M.; Nitz, M. Org. Biomol. Chem. 2015, 13, 7027-7033.
    (3) Abe, M.; Hilmey, D. G.; Stilts, C. E.; Sukumaran, D. K.; Detty, M. R. Organometallics 2002, 21, 2986-2992.
    (4) Jung, E. H.; Bae, S.; Yoo, T. W.; Jo, W. H. Polym. Chem. 2014, 5, 6545-6550.
    (5) Kaur, M.; Yang, D. S.; Shin, J.; Lee, T. W.; Choi, K.; Cho, M. J.; Choi, D. H. Chem. Comm. 2013, 49, 5495-5497.
    (6) Carrera, E. I.; Seferos, D. S. Macromolecules 2015, 48, 297-308.
    (7) Rivard, E. Chem. Lett. 2015, 44, 730-736.
    (8) Pander, P.; Motyka, R.; Zassowski, P.; Lapkowsk, M.; Swist, A.; Data, P. J. Phys. Chem. C 2017, 121, 11027-11036.
    (9) Jeffries-El, M.; Kobilka, B. M.; Hale, B. J. Macromolecules 2014, 47, 7253-7271.
    (10) Jahnke, A. A.; Seferos, D. S. Macromol. Rapid Commun. 2011, 32, 943-951.
    (11) Gibson, G. L.; McCormick, T. M.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 539-547.
    (12) González, D. M.; Raftopoulos, K. N.; He, G.; Papadakis, C. M.; Brown, A.; Rivard, E.; Müller-Buschbaum, P. Macromol. Rapid Commun. 2017, 38, 1700065.
    (13) Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.; Schroeder, B. C.; Holliday, S.; Hurhangee, M.; Nielsen, C. B.; Sirringhaus, H.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 1314-1321.
    (14) Oyama, T.; Yang, Y. S.; Matsuo, K.; Yasuda, T. Chem. Comm. 2017, 53, 3814-3817.
    (15) Garrett, G. E.; Carrera, E. I.; Seferos, D. S.; Taylor, M. S. Chem. Comm. 2016, 52, 9881-9884.
    (16) Alves, D.; Prigol, M.; Nogueira, C. W.; Zeni, G. Synlett 2008, 914-918.
    (17) Stein, A. L.; Alves, D.; da Rocha, J. T.; Nogueira, C. W.; Zeni, G. Org. Lett. 2008, 10, 4983-4986.
    (18) Potapov, V. A.; Amosova, S. V.; Doron'kina, I. V. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 2002, 38, 259-260.
    (19) Katkevics, M.; Yamaguchi, S.; Toshimitsu, A.; Tamao, K. Organometallics 1998, 17, 5796-5800.
    (20) Dabdoub, M. J.; Dabdoub, V. B.; Pereira, M. A.; Zukerman-Schpector, J. J. Org. Chem. 1996, 61, 9503-9511.
    (21) Sathyamoorthy, B.; Axelrod, A.; Farwell, V.; Bennett, S. M.; Calitree, B. D.; Benedict, J. B.; Sukumaran, D. K.; Detty, M. R. Organometallics 2010, 29, 3431-3441.
    (22) Torres Delgado, W.; Shahin, F.; Ferguson, M. J.; McDonald, R.; He, G.; Rivard, E. Organometallics 2016, 35, 2140-2148.
    (23) Gai, B. M.; Stein, A. L.; Roehrs, J. A.; Bilheri, F. N.; Nogueira, C. W.; Zeni, G. Org. Biomol. Chem. 2012, 10, 798-807.
    (24) Sweat, D. P.; Stephens, C. E. Synthesis 2009, 3214-3218.
    (25) Mack, W. Angew. Chem., Int. Ed. 1966, 5, 896-896.
    (26) Sweat, D. P.; Stephens, C. E. J. Organomet. Chem. 2008, 693, 2463-2464.
    (27) He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E. Angew. Chem., Int. Ed. 2014, 53, 4587-4591.
    (28) Yan, X.; Xi, C. Acc. Chem. Res. 2015, 48, 935-946.
    (29) Catel, J. M.; Mahatsekake, C.; Andrieu, C.; Mollier, Y. Phosphorus Sulfur 1987, 34, 119-121.
    (30) Jahnke, A. A.; Djukic, B.; McCormick, T. M.; Buchaca Domingo, E.; Hellmann, C.; Lee, Y.; Seferos, D. S. J. Am. Chem. Soc. 2013, 135, 951-954.
    (31) Park, Y. S.; Wu, Q.; Nam, C.-Y.; Grubbs, R. B. Angew. Chem., Int. Ed. 2014, 53, 10691-10695.
    (32) McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 3542-3548.
    (33) Carrera, E. I.; Lanterna, A. E.; Lough, A. J.; Scaiano, J. C.; Seferos, D. S. J. Am. Chem. Soc. 2016, 138, 2678-2689.
    (34) Nagahora, N.; Yahata, S.; Goto, S.; Shioji, K.; Okuma, K. J. Org. Chem. 2018, 83, 1969-1975.
    (35) Okuma, K.; Yahata, S.; Nagahora, N.; Shioji, K. Chem. Lett. 2017, 46, 405-407.
    (36) Stein, A. L.; Bilheri, F. N.; Rosario, A. R.; Zeni, G. Org. Biomol. Chem. 2013, 11, 2972-2978.
    (37) Osuka, A.; Takechi, K.; Suzuki, H. Bull. Chem. Soc. Jpn. 1984, 57, 303-304.
    (38) Mack, W. Angew. Chem., Int. Ed. Engl. 1967, 6, 1083-1084.
    (39) Perin, G.; Barcellos, A. M.; Peglow, T. J.; Nobre, P. C.; Cargnelutti, R.; Lenardao, E. J.; Marini, F.; Santi, C. RSC Adv. 2016, 6, 103657-103661.
    (40) Rappoport, Z. Acc. Chem. Res. 1981, 14, 7-15.
    (41) Rappoport, Z. Acc. Chem. Res. 1992, 25, 474-479.
    (42) Bernasconi, C. F.; Rappoport, Z. Acc. Chem. Res. 2009, 42, 993-1003.
    (43) Bach, R. D.; Baboul, A. G.; Schlegel, H. B. J. Am. Chem. Soc. 2001, 123, 5787-5793.
    (44) Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1994, 116, 5961-5962.
    (45) Lei, M.-Y.; Fukamizu, K.; Xiao, Y.-J.; Liu, W.-M.; Twiddy, S.; Chiba, S.; Ando, K.; Narasaka, K. Tetrahedron Lett. 2008, 49, 4125-4129.
    (46) Kim, C. K.; Hyun, K. H.; Kim, C. K.; Lee, I. J. Am. Chem. Soc. 2000, 122, 2294-2299.
    (47) Lucchini, V.; Modena, G.; Pasquato, L. J. Am. Chem. Soc. 1995, 117, 2297-2300.
    (48) Heredia, A. A.; Peñéñory, A. B. RSC Advances 2015, 5, 105699-105706.
    (49) Fernández, I.; Bickelhaupt, F. M.; Uggerud, E. J. Org. Chem. 2013, 78, 8574-8584.
    (50) Li, M.; Gutierrez, O.; Berritt, S.; Pascual-Escudero, A.; Yeşilçimen, A.; Yang, X.; Adrio, J.; Huang, G.; Nakamaru-Ogiso, E.; Kozlowski, M. C.; Walsh, P. J. Nat. Chem. 2017, 9, 997.

    Chapter 3
    (1) Bird, C. W.; Cheeseman, G. W. H.; Hörnfeldt, A. B. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984.
    (2) Christiaens, L. E. E. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996.
    (3) Minkin, V. I.; Sadekov, I. D. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford, 2008.
    (4) Schatz, J.; Sesler, M. Science of Synthesis: Knowledge Updates 2010, 99-107.
    (5) Jahnke, A. A.; Seferos, D. S. Macromol. Rapid Commun. 2011, 32, 943-951.
    (6) Rhoden, C. R. B.; Zeni, G. Org. Biomol. Chem. 2011, 9, 1301-1313.
    (7) Rappoport, Z. The chemistry of organic selenium and tellurium compounds; Wiley: Chichester, West Sussex; Hoboken, New Jersy, 2012.
    (8) Carrera, E. I.; Seferos, D. S. Macromolecules 2015, 48, 297-308.
    (9) Rivard, E. Chem. Lett. 2015, 44, 730-736.
    (10) Wang, L.; Cao, W.; Xu, H. ChemNanoMat 2016, 2, 479-488.
    (11) Chatterjee, T.; Shetti, V. S.; Sharma, R.; Ravikanth, M. Chem. Rev. 2017, 117, 3254-3328.
    (12) Janosik, T.; Bergman, J. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2007; Vol. 18.
    (13) Janosik, T.; Bergman, J. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2008; Vol. 19.
    (14) Janosik, T.; Bergman, J. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2009; Vol. 20.
    (15) Janosik, T.; Bergman, J. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2009; Vol. 21.
    (16) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G., Joule, J. A., Eds.; Elsevier: Oxford, 2011; Vol. 22.
    (17) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2011; Vol. 23.
    (18) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2012; Vol. 24.
    (19) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2013; Vol. 25.
    (20) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2014; Vol. 26.
    (21) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2015; Vol. 27.
    (22) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2016; Vol. 28.
    (23) Biehl, E. R. In Prog. Heterocycl. Chem.; Gribble, G. W., Joule, J. A., Eds.; Elsevier: Oxford, 2017; Vol. 29.
    (24) Alparone, A. Struct. Chem. 2014, 25, 959-968.
    (25) Paliani, G.; Cataliotti, R.; Poletti, A.; Fringuelli, F.; Taticchi, A.; Giorgini, M. G. Spectrochim. Acta, Part A: Molecular Spectroscopy 1976, 32A, 1089-1104.
    (26) Alparone, A. J. Quant. Chem. 2014, 2014, Article ID 860179.
    (27) Vessally, E. J. Struct. Chem. 2008, 49, 979-985.
    (28) Muranaka, A.; Yasuike, S.; Liu, C.-Y.; Kurita, J.; Kakusawa, N.; Tsuchiya, T.; Okuda, M.; Kobayashi, N.; Matsumoto, Y.; Yoshida, K.; Hashizume, D.; Uchiyama, M. J. Phys. Chem. A 2009, 113, 464-473.
    (29) McCormick, T. M.; Jahnke, A. A.; Lough, A. J.; Seferos, D. S. J. Am. Chem. Soc. 2012, 134, 3542-3548.
    (30) Carrera, E. I.; Seferos, D. S. Dalton Trans. 2015, 44, 2092-2096.
    (31) Li, P.-F.; Carrera, E. I.; Seferos, D. S. ChemPlusChem 2016, 81, 917-921.
    (32) Carrera, E. I.; Lanterna, A. E.; Lough, A. J.; Scaiano, J. C.; Seferos, D. S. J. Am. Chem. Soc. 2016, 138, 2678-2689.
    (33) Xu, H.-J.; Mack, J.; Wu, D.; Xue, Z.-L.; Descalzo, A. B.; Rurack, K.; Kobayashi, N.; Shen, Z. Chem. Eur. J. 2012, 18, 16844-16867.
    (34) He, G.; Torres Delgado, W.; Schatz, D. J.; Merten, C.; Mohammadpour, A.; Mayr, L.; Ferguson, M. J.; McDonald, R.; Brown, A.; Shankar, K.; Rivard, E. Angew. Chem., Int. Ed. 2014, 53, 4587-4591.
    (35) Braun, C. A.; Zomerman, D.; de Aguiar, I.; Qi, Y.; Delgado, W. T.; Ferguson, M. J.; McDonald, R.; de Souza, G. L. C.; He, G.; Brown, A.; Rivard, E. Faraday Discuss. 2017, 196, 255-268.
    (36) Torres Delgado, W.; Braun, C. A.; Boone, M. P.; Shynkaruk, O.; Qi, Y.; McDonald, R.; Ferguson, M. J.; Data, P.; Almeida, S. K. C.; Aguiar, I. d.; de Souza, G. L. C.; Brown, A.; He, G.; Rivard, E. ACS Appl. Mater. Interfaces 2018, 10, 12124-12134.
    (37) Garrett, G. E.; Carrera, E. I.; Seferos, D. S.; Taylor, M. S. Chem. Comm.2016, 52, 9881-9884.
    (38) Salehzadeh, S.; Saberinasab, M. Mol. Phys. 2016, 114, 3669-3678.
    (39) Carrera, E. I.; Seferos, D. S. Organometallics 2017, 36, 2612-2621.
    (40) Wei, J.; Meng, D.; Zhang, L.; Wang, Z. Chem. - Asian J. 2017, 12, 1879-1882.
    (41) Oyama, T.; Yang, Y. S.; Matsuo, K.; Yasuda, T. Chem. Comm. 2017, 53, 3814-3817.
    (42) Patra, A.; Wijsboom, Y. H.; Leitus, G.; Bendikov, M. Org. Lett. 2009, 11, 1487-1490.
    (43) Aprile, A.; Iversen, K. J.; Wilson, D. J. D.; Dutton, J. L. Inorg. Chem. 2015, 54, 4934-4939.
    (44) He, G.; Wiltshire, B. D.; Choi, P.; Savin, A.; Sun, S.; Mohammadpour, A.; Ferguson, M. J.; McDonald, R.; Farsinezhad, S.; Brown, A.; Shankar, K.; Rivard, E. Chem. Comm. 2015, 51, 5444-5447.
    (45) Matsumura, M.; Muranaka, A.; Kurihara, R.; Kanai, M.; Yoshida, K.; Kakusawa, N.; Hashizume, D.; Uchiyama, M.; Yasuike, S. Tetrahedron 2016, 72, 8085-8090.
    (46) Liu, W.-X.; Yan, F.; Qian, S.-L.; Ye, J.-Y.; Liu, X.; Yu, M.-X.; Wu, X.-H.; Le, M.-L.; Zhou, Z.-Y.; Liu, S.-H.; Low, P. J.; Jin, S. Eur. J. Inorg. Chem. 2017, 2017, 5015-5026.
    (47) Li, G.; Xu, L.; Zhang, W.; Zhou, K.; Ding, Y.; Liu, F.; He, X.; He, G. Angew. Chem., Int. Ed. 2018, 57, 4897-4901.
    (48) Karapala, V. K.; Shih, H.-P.; Han, C.-C. Org. Lett. 2018, 20, 1550-1554.
    (49) Nagahora, N.; Yahata, S.; Goto, S.; Shioji, K.; Okuma, K. J. Org. Chem. 2018, 83, 1969-1975.
    (50) He, G.; Kang, L.; Torres Delgado, W.; Shynkaruk, O.; Ferguson, M. J.; McDonald, R.; Rivard, E. J. Am. Chem. Soc. 2013, 135, 5360-5363.
    (51) Torres Delgado, W.; Shahin, F.; Ferguson, M. J.; McDonald, R.; He, G.; Rivard, E. Organometallics 2016, 35, 2140-2148.
    (52) Wang, S.; Li, X.; Hou, X.; Sun, Y.; Shao, X. Chem. Comm. 2016, 52, 14486-14489.
    (53) Carrera, E. I.; McCormick, T. M.; Kapp, M. J.; Lough, A. J.; Seferos, D. S. Inorg. Chem. 2013, 52, 13779-13790.
    (54) Sathyamoorthy, B.; Axelrod, A.; Farwell, V.; Bennett, S. M.; Calitree, B. D.; Benedict, J. B.; Sukumaran, D. K.; Detty, M. R. Organometallics 2010, 29, 3431-3441.
    (55) Pacholska-Dudziak, E.; Szterenberg, L.; Latos-Grazynski, L. Chem. - Eur. J. 2011, 17, 3500-3511.
    (56) Pacholska-Dudziak, E.; Szczepaniak, M.; Ksiazek, A.; Latos-Grazynski, L. Angew. Chem., Int. Ed. 2013, 52, 8898-8903.
    (57) Ahmad, S.; Yadav, K. K.; Singh, S. J.; Chauhan, S. M. S. RSC Adv. 2014, 4, 3171-3180.
    (58) Kumar, S.; Lee, W.-Z.; Ravikanth, M. Org. Lett. 2018, 20, 636-639.
    (59) Sweat, D. P.; Stephens, C. E. J. Organomet. Chem. 2008, 693, 2463-2464.
    (60) Jahnke, A. A.; Howe, G. W.; Seferos, D. S. Angew. Chem., Int. Ed. 2010, 49, 10140-10144.
    (61) Kaur, M.; Yang, D. S.; Shin, J.; Lee, T. W.; Choi, K.; Cho, M. J.; Choi, D. H. Chem. Comm. 2013, 49, 5495-5497.
    (62) McCormick, T. M.; Carrera, E. I.; Schon, T. B.; Seferos, D. S. Chem. Comm. 2013, 49, 11182-11184.
    (63) Park, Y. S.; Kale, T. S.; Nam, C. Y.; Choi, D.; Grubbs, R. B. Chem. Comm. 2014, 50, 7964-7967.
    (64) Kaur, M.; Yang, D. S.; Choi, K.; Cho, M. J.; Choi, D. H. Dyes Pigm. 2014, 100, 118-126.
    (65) Kaur, M.; Lee, D. H.; Yang, D. S.; Um, H. A.; Cho, M. J.; Kang, J. S.; Choi, D. H. Dyes Pigm. 2015, 123, 317-322.
    (66) Szyszko, B.; Pacholska-Dudziak, E.; Latos-Grazynski, L. J. Org. Chem. 2013, 78, 5090-5095.
    (67) Ahmad, S.; Yadav, K. K.; Bhattacharya, S.; Chauhan, P.; Chauhan, S. M. S. J. Org. Chem. 2015, 80, 3880-3890.
    (68) Ahmad, S.; Singhal, A.; Nisa, K.; Chauhan, S. M. S. Inorg. Chem. 2018, 57, 11333-11340.
    (69) Jahnke, A. A.; Djukic, B.; McCormick, T. M.; Buchaca Domingo, E.; Hellmann, C.; Lee, Y.; Seferos, D. S. J. Am. Chem. Soc. 2013, 135, 951-954.
    (70) Mahrok, A. K.; Carrera, E. I.; Tilley, A. J.; Ye, S.; Seferos, D. S. Chem. Comm. 2015, 51, 5475-5478.
    (71) Al-Hashimi, M.; Han, Y.; Smith, J.; Bazzi, H. S.; Alqaradawi, S. Y. A.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M. Chem. Sci. 2016, 7, 1093-1099.
    (72) Lv, L.; Wang, X.; Wang, X.; Yang, L.; Dong, T.; Yang, Z.; Huang, H. ACS Appl. Mater. Interfaces 2016, 8, 34620-34629.
    (73) Li, P.-F.; Schon, T. B.; Seferos, D. S. Angew. Chem., Int. Ed. 2015, 54, 9361-9366.
    (74) Rusakov, Y. Y.; Krivdin, L. B.; Osterstrom, F. F.; Sauer, S. P. A.; Potapov, V. A.; Amosova, S. V. Phys. Chem. Chem. Phys. 2013, 15, 13101-13107.
    (75) Planells, M.; Schroeder, B. C.; McCulloch, I. Macromolecules 2014, 47, 5889-5894.
    (76) Kaur, M.; Lee, D. H.; Yang, D. S.; Um, H. A.; Cho, M. J.; Kang, J. S.; Choi, D. H. Chem. Comm. 2014, 50, 14394-14396.
    (77) Jung, E. H.; Bae, S.; Yoo, T. W.; Jo, W. H. Polym. Chem. 2014, 5, 6545-6550.
    (78) Pander, P.; Motyka, R.; Zassowski, P.; Lapkowski, M.; Swist, A.; Data, P. J. Phys. Chem. C 2017, 121, 11027-11036.
    (79) Zhang, K.; Lv, L.; Wang, X.; Mi, Y.; Chai, R.; Liu, X.; Shen, G.; Peng, A.; Huang, H. ACS Appl. Mater. Interfaces 2018, 10, 1917-1924.
    (80) Manion, J. G.; Ye, S.; Proppe, A. H.; Laramee, A. W.; McKeown, G. R.; Kynaston, E. L.; Kelley, S. O.; Sargent, E. H.; Seferos, D. S. ACS Appl. Energy Mater. 2018, 1, 5033-5042.
    (81) Yang, L.; Gu, W.; Lv, L.; Chen, Y.; Yang, Y.; Ye, P.; Wu, J.; Hong, L.; Peng, A.; Huang, H. Angew. Chem. Int. Ed. 2018, 57, 1096-1102.
    (82) Pacholska-Dudziak, E.; Ulatowski, F.; Ciunik, Z.; Latos-Grazynski, L. Chem. - Eur. J. 2009, 15, 10924-10929.
    (83) Promarak, V.; Punkvuang, A.; Jungsuttiwong, S.; Saengsuwan, S.; Sudyoadsuk, T.; Keawin, T. Tetrahedron Lett. 2007, 48, 3661-3665.
    (84) Inoue, S.; Jigami, T.; Nozoe, H.; Otsubo, T.; Ogura, F. Tetrahedron Lett. 1994, 35, 8009-8012.
    (85) Takimiya, K.; Konda, Y.; Ebata, H.; Niihara, N.; Otsubo, T. J. Org. Chem. 2005, 70, 10569-10571.
    (86) Lapkowski, M.; Motyka, R.; Suwinski, J.; Data, P. Macromol. Chem. Phys. 2012, 213, 29-35.
    (87) Data, P.; Lapkowski, M.; Motyka, R.; Suwinski, J. Electrochim. Acta 2012, 83, 271-282.
    (88) Lee, W.-H.; Kyu Lee, S.; Suk Shin, W.; Moon, S.-J.; Kang, I.-N. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2753-2758.
    (89) Jahnke, A. C.; Spulber, M.; Neuburger, M.; Palivan, C. G.; Wenger, O. S. Chem. Comm. 2014, 50, 10883-10886.
    (90) Chen, S.-Y.; Pao, Y.-C.; Sahoo, S. K.; Huang, W.-C.; Lai, Y.-Y.; Cheng, Y.-J. Chem. Comm. 2018, 54, 1517-1520.
    (91) Park, Y. S.; Wu, Q.; Nam, C.-Y.; Grubbs, R. B. Angew. Chem., Int. Ed. 2014, 53, 10691-10695.
    (92) Sun, Y.; Li, X.; Sun, C.; Shen, H.; Hou, X.; Lin, D.; Zhang, H.-L.; Di, C.-a.; Zhu, D.; Shao, X. Angew. Chem., Int. Ed. 2017, 56, 13470-13474.
    (93) Ye, S.; Steube, M.; Carrera, E. I.; Seferos, D. S. Macromolecules 2016, 49, 1704-1711.
    (94) Sweat, D. P.; Stephens, C. E. Synthesis 2009, 3214-3218.
    (95) Stein, A. L.; Alves, D.; da Rocha, J. T.; Nogueira, C. W.; Zeni, G. Org. Lett. 2008, 10, 4983-4986.
    (96) Inoue, S.; Mikami, S.; Takimiya, K.; Otsubo, T.; Aso, Y. Heterocycles 2007, 71, 253-268.
    (97) Szyszko, B.; Malecki, M.; Berlicka, A.; Bialek, M. J.; Bialonska, A.; Kupietz, K.; Pacholska-Dudziak, E.; Latos-Grazynski, L. Chem. - Eur. J. 2016, 22, 7602-7608.
    (98) Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.; Schroeder, B. C.; Holliday, S.; Hurhangee, M.; Nielsen, C. B.; Sirringhaus, H.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 1314-1321.
    (99) Alves, D.; Prigol, M.; Nogueira, C. W.; Zeni, G. Synlett 2008, 914-918.
    (100) Gai, B. M.; Stein, A. L.; Roehrs, J. A.; Bilheri, F. N.; Nogueira, C. W.; Zeni, G. Org. Biomol. Chem. 2012, 10, 798-807.
    (101) Stein, A. L.; Bilheri, F. N.; Rosario, A. R.; Zeni, G. Org. Biomol. Chem. 2013, 11, 2972-2978.
    (102) Hoover, G. C.; Ham, J.; Tang, C.; Carrera, E. I.; Seferos, D. S. Can. J. Chem. 2018, 96, 929-933.
    (103) Wu, B.; Yoshikai, N. Angew. Chem., Int. Ed. 2013, 52, 10496-10499.
    (104) Fell, V. H. K.; Mikosch, A.; Steppert, A.-K.; Ogieglo, W.; Senol, E.; Canneson, D.; Bayer, M.; Schoenebeck, F.; Greilich, A.; Kuehne, A. J. C. Macromolecules 2017, 50, 2338-2343.
    (105) Okuma, K.; Yahata, S.; Nagahora, N.; Shioji, K. Chem. Lett. 2017, 46, 405-407.
    (106) Sashida, H.; Kaname, M.; Ohyanagi, K. Heterocycles 2010, 82, 441-447.
    (107) Park, H.; Edgar, L. J.; Lumba, M. A.; Willis, L. M.; Nitz, M. Org. Biomol. Chem. 2015, 13, 7027-7033.
    (108) Edgar, L. J.; Vellanki, R. N.; McKee, T. D.; Hedley, D.; Wouters, B. G.; Nitz, M. Angew. Chem., Int. Ed. 2016, 55, 13159-13163.
    (109) Lumba, M. A.; Willis, L. M.; Santra, S.; Rana, R.; Schito, L.; Rey, S.; Wouters, B. G.; Nitz, M. Org. Biomol. Chem. 2017, 15, 6388-6392.
    (110) Willis, L. M.; Park, H.; Watson, M. W. L.; Majonis, D.; Watson, J. L.; Nitz, M. Cytometry Part A 2018, 93, 685-694.
    (111) Duhović, S.; Dincă, M. Chem. Mater. 2015, 27, 5487-5490.
    (112) Xing, W.; Ye, P.; Lu, J.; Wu, X.; Chen, Y.; Zhu, T.; Peng, A.; Huang, H. J. Power Sources 2018, 401, 13-19.

    QR CODE