研究生: |
王鴻政 Wang, Hung-Cheng |
---|---|
論文名稱: |
以果蠅為動物模式研究LRRK2基因之特性 The characteristic investigation of LRRK2 gene in Drosophila animal model |
指導教授: |
張慧雲
Chang, Hui-Yun |
口試委員: |
汪宏達
蔡玉真 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 巴金森病 、百草枯 、魚藤酮 、果蠅 、長鏈聚麩醯胺 、細胞凋亡基因 、氧化壓力 、壽命 |
外文關鍵詞: | LRRK2, Parkinson disease, paraquat, polyglutamine, grim, reaper, hid, Ddc-Gal4, TH-Gal4, TPH-Gal4, lifespan, oxidative dtress |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LRRK2(Leucine-repeat-kinase 2)是一種多結構功能的蛋白質,分子量為285 kD。已知有多種不同位置的點突變被發現,在遺傳性巴金森病家族(familial parkinsonism)中是最普遍被發現的突變基因。然而;此蛋白質在生物中的功能仍不清處。在本研究中我們利用果蠅為實驗生物,表現LRRK2在神經細胞中可以增加果蠅壽命及增加對壓力的抗性。例如在果蠅全身神經表現LRRK2,可以抵抗百草枯(paraquat)及魚藤酮(rotenone)所造成的氧化壓力。利用果蠅眼睛專一的driver共同表現長鏈聚麩醯胺(polyglutamine)和LRRK2可以拯救41Q所造成的眼睛退化,但是無法防止63Q 及108 Q所造成的眼睛退化。此外;我們用了3個細胞凋亡基因grim, reaper及hid去測試LRRK2對凋亡基因的拯救作用,我們發現LRRK2可以拯救grim所導致的果蠅眼睛退化,但是無法拯救hid 及reaper所導致的眼睛退化。在果蠅全身神經表現LRRK2可以增加壽命及抗氧化壓力,為了測試果蠅對對氧化壓力的反應區位,我們用了Ddc-Gal4(dopa-decarboxylase)driver和TH(dopaminergic)及TPH(sertoningeric)的Gal4 driver表現LRRK2。和原先預期的相反;TH的神經並不能表現抗氧化壓力,而TPH 表現的神經在較低濃度(5mM)的百草枯測試下對果蠅具有保護作用 。本研究總結下列結論:表現LRRK2基因可以增加果蠅壽命及抗氧化壓力;並對41Q造成的果蠅眼退化有抑制作用以及降低grim 對果蠅眼睛造成的退化及變小有恢復的效果。
Leucinerichrepeat kinase 2(LRRK2) is a multifunctional domain protein, which molecular weight is 285kD.There have been identified that many mutation cause familial Parkinson disease.LRRK2 gene mutations are the most common genetic cause of Parkinson’s disease. However, little is known about the biological function of LRRK2 gene. In m ystudy, I use Drosophila as an animal model; overexpression of LRRK2 can increase Drosophila lifespan and resistance to oxidative stress. For example expression by pan neuronal driver Elav can extend lifespan and oxidative stress caused by paraquat and rotenone. Using GMR specific Gal4 driver to expression PolyQ and LRRK2 simultaneously can ameliorate 41Q induce eye degeneration, but not for 63Q and 108Q longer PolyQ induce toxicity. Moreover, I use three apoptosis related gene to examine the rescue efficiency by expression LRRK2 gene. I found that LRRK2 can reverse grim caused eye degeneration and down-size fly eyes, but there is little effect on hid or reaper induced eye abnormality. Ubiquitous expression of LRRK2 extends Drosophila lifespan and increase oxidative stress resistance. Toexamine which tissue is responsible for resistance to oxidative stress, we use Ddc(dopa-decarboxylase) Gal4 driver and its subset neuron drivers TH(dopaminergic) and TPH(serotoninergic)neurons, unlike our expectations, there is no protection on TH drive LRRK2 neurons ;however there is partially protection at lower concentration of paraquat on TPH neurons. To summarize my research, there is lifespan extension in Drosophila and oxidative stress by overexpression LRRK2 gene, and protection from 41Q induced eye degeneration. Finally expressions of LRRK2 show reduce the ability to grim cause down size of fly eyes and eye degeneration.
Abou-Sleiman PM, Muqit MMK, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nature Reviews Neuroscience 7: 207-219.
Aleyasin H, Rousseaux MW, Marcogliese PC, Hewitt SJ, Irrcher I, et al. (2010) DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc Natl Acad Sci U S A 107: 3186-3191.
Andrea H. Brand, Norbert Perrimon. (1993)Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.Development 118, 401-415
Ayyadevara S, Engle MR, Singh SP, Dandapat A, Lichti CF, et al. (2005) Lifespan and stress resistance of Caenorhabditis elegans are increased by expression of glutathione transferases capable of metabolizing the lipid peroxidation product 4-hydroxynonenal. Aging Cell 4: 257-271.
Bandopadhyay R, de Belleroche J (2010) Pathogenesis of Parkinson's disease: emerging role of molecular chaperones. Trends in Molecular Medicine 16: 27-36.
Batelli S, Albani D, Rametta R, Polito L, Prato F, et al. (2008) DJ-1 modulates alpha-synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson's disease and involvement of HSP70. PLoS One 3: e1884.
Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95: 331-341.
Berwick DC, Harvey K (2011) LRRK2 signaling pathways: the key to unlocking neurodegeneration? Trends Cell Biol.
Carballo-Carbajal I, Weber-Endress S, Rovelli G, Chan D, Wolozin B, et al. (2010) Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 22: 821-827.
Chai JJ, Yan N, Huh JR, Wu JW, Li WY, et al. (2003) Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nature Structural Biology 10: 892-898.
Chung J, Lee SB, Kim W, Lee S (2007) Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochemical and Biophysical Research Communications 358: 534-539.
Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev Neurosci 11: 791-797.
Deas E, Dunn L (2010) Unraveling LRRK2 pathogenesis: common pathways for complex genes? J Neurosci 30: 1577-1579.
Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Curr Opin Neurobiol 17: 331-337.
Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7: 306-318.
Fett ME, Pilsl A, Paquet D, van Bebber F, Haass C, et al. (2010) Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model. PLoS One 5.
Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247.
Giasson BI, Hao LY, Bonini NM (2010) DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proceedings of the National Academy of Sciences of the United States of America 107: 9747-9752.
Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19: 589-597.
Guo L, Gandhi PN, Wang W, Petersen RB, Wilson-Delfosse AL, et al. (2007) The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase thatstimulates kinase activity. Experimental Cell Research 313: 3658-3670.
Hattori N, Mizuno Y (2004) Pathogenetic mechanisms of parkin in Parkinson's disease. Lancet 364: 722-724.
Haugarvoll K, Wszolek ZK (2009) Clinical features of LRRK2 parkinsonism. Parkinsonism Relat Disord 15 Suppl 3: S205-208.
Haywood AFM, Staveley BE (2004) Parkin counteracts symptoms in a Drosophila model of Parkinson's disease. Bmc Neuroscience 5: -.
Heo HY, Park JM, Kim CH, Han BS, Kim KS, et al. (2010) LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Exp Cell Res 316: 649-656.
Hurtado-Lorenzo A, Anand VS (2008) Heat shock protein 90 modulates LRRK2 stability: potential implications for Parkinson's disease treatment. J Neurosci 28: 6757-6759.
Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, et al. (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27: 2432-2443.
Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, et al. (2010) Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29: 3571-3589.
Kanao T, Venderova K, Park DS, Unterman T, Lu B, et al. (2010) Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Hum Mol Genet 19: 3747-3758.
Ko HS, Bailey R, Smith WW, Liu Z, Shin JH, et al. (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci U S A 106: 2897-2902.
Leiers B, Kampkotter A, Grevelding CG, Link CD, Johnson TE, et al. (2003) A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol Med 34: 1405-1415.
Lesage S, Brice A (2009) Parkinson's disease: from monogenic forms to genetic susceptibility factors. Human Molecular Genetics 18: R48-R59.
Li XT, Patel JC, Wang J, Avshalumov MV, Nicholson C, et al. (2010) Enhanced Striatal Dopamine Transmission and Motor Performance with LRRK2 Overexpression in Mice Is Eliminated by Familial Parkinson's Disease Mutation G2019S. Journal of Neuroscience 30: 1788-1797.
Liao PC, Lin HY, Yuh CH, Yu LK, Wang HD (2008) The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem Biophys Res Commun 376: 637-641.
Liou AK, Leak RK, Li L, Zigmond MJ (2008) Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway.Neurobiology of Disease 32: 116-124.
Liu Z, Wang X, Yu Y, Li X, Wang T, et al. (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 105: 2693-2698.
Martinat C, Shendelman S, Jonason A, Leete T, Beal MF, et al. (2004) Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES- derived cell model of primary Parkinsonism. PLoS Biol 2: e327.
Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA (2006) LRRK2 in Parkinson's disease: protein domains and functional insights. Trends Neurosci 29: 286-293.
Meulener MC, Xu K, Thomson L, Ischiropoulos H, Bonini NM (2006) Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. Proc Natl Acad Sci U S A 103: 12517-12522.
Moore DJ (2008) The biology and pathobiology of LRRK2: implications for Parkinson's disease. Parkinsonism Relat Disord 14 Suppl 2: S92-98.
Morrow G, Samson M, Michaud S, Tanguay RM (2004) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. Faseb Journal 18: 598-599.
Ng CH, Mok SZ, Koh C, Ouyang X, Fivaz ML, et al. (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 29: 11257-11262.
Park J, Lee SB, Lee S, Kim Y, Song S, et al. (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157-1161.
Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, et al. (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19: 171-174.
Qing H, Zhang Y, Deng Y, McGeer EG, McGeer PL (2009) Lrrk2 interaction with [alpha]-synuclein in diffuse Lewy body disease. Biochemical and Biophysical Research Communications 390: 1229-1234.
Reveillaud I, Niedzwiecki A, Bensch KG, Fleming JE (1991) Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance of oxidative stress. Mol Cell Biol 11: 632-640.
Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, et al. (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29: 9210-9218.
Smith WW, Pei Z, Jiang H, Moore DJ, Liang Y, et al. (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of America 102: 18676-18681.
Takizawa M, Komori K, Tampo Y, Yonaha M (2007) Paraquat-induced oxidative stress and dysfunction of cellular redox systems including antioxidative defense enzymes glutathione peroxidase and thioredoxin reductase. Toxicol In Vitro 21: 355-363.
Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko PF (2005) Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev 19: 1840–1843
Teleman AA, Chen YW, Cohen SM (2005) 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes Dev 19: 1844–1848
Todd AM, Staveley BE (2008) Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson's disease. Genome 51: 1040-1046.
Todd BS, Ranjita B,Claudia MT,Byoung BS,Jason RR,et al (2003) Mechanism of Toxicity in Rotenone Models of Parkinson’s Disease. Journal of Neuroscience 26:10756 –10764
Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, et al. (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 107: 9879-9884.
Tsai YC, Fishman PS, Thakor NV, Oyler GA (2003) Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. Journal of Biological Chemistry 278: 22044-22055.
Venderova K, Kabbach G, Abdel-Messih E, Zhang Y, Parks RJ, et al. (2009) Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Human Molecular Genetics 18: 4390-4404.
Wang D, Qian L, Xiong H, Liu J, Neckameyer WS, et al. (2006) Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci U S A 103: 13520-13525.
Wang D, Tang B, Zhao G, Pan Q, Xia K, et al. (2008) Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol Neurodegener 3: 3.
Wang MC, Bohmann D, Jasper H (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5: 811-816.
Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, et al. (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23: 425-428.
Xiong H, Wang D, Chen L, Choo YS, Ma H, et al. (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119: 650-660.
Yamaguchi S, Ishihara H, Yamada T, Tamura A, UsuiM,et al. (2008) ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab 7: 269–276
Yang H, Zhou HY, Li B, Niu GZ, Chen SD (2007) Downregulation of parkin damages antioxidant defenses and enhances proteasome inhibition-induced toxicity in PC12 cells. J Neuroimmune Pharmacol 2: 276-283.
Yang YF, Gehrke S, Haque ME, Imai Y, Kosek J, et al. (2005) Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proceedings of the National Academy of Sciences of the United States of America 102: 13670-13675.
Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, et al. (1997) Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci U S A 94: 5131-5136.