研究生: |
曾嘉宏 Jia-Hung Tseng |
---|---|
論文名稱: |
以射頻磁控濺鍍法製作鋯酸鉛鋇薄膜之研究 The Study of RF-Magnetron-Sputtered (PbBa)(PbZr)O3 Thin Film |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 鐵電性 、順電性 、濺鍍 、鋯酸鉛鋇 、鎳酸鑭 |
外文關鍵詞: | Ferroelectric, Paraelectric, Sputter, Lead Barium Zirconate (PbBa)ZrO3 (PBZ), LaNiO3 (LNO) |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在這篇論文中,我們將以射頻磁控濺鍍法鍍製鋯酸鉛鋇( (Pb2+1-xBa2+x)(Pb4+1-yZr4+y)O3, PBZ ) 薄膜材料,並對其成份的變化及控制作研究。利用(100)及(200)指向的鎳酸鑭(LaNiO3, LNO)作為底電極,使得鋯酸鉛鋇薄膜具有(100)及(200)的優選方向,而藉由變化靶材中氧化鉛的過量比例及基板的溫度則可控制鋯酸鉛鋇薄膜中鉛的含量。由於薄膜中四價鉛離子的含量會影響到(100)及(200)指向兩者間的強度差異,因此在本文中將建立一個結構及成份的模型,對此一現象作探討,而模型所模擬出的成份變化與利用鍵結能量所Fit出的結果是一致的。
從實驗結果發現,薄膜的電性和結晶強度差異均與成份中四價鉛的含量有密切的關係,藉著將鋯酸鉛鋇薄膜中四價鉛的含量由0~0.12增加到0.2~0.22,可以使鋯酸鉛鋇薄膜由鐵電相轉變為順電相,在上述的調變範圍內,鋯酸鉛鋇薄膜均具有良好的電性,其漏電流可維持在10-7 (A/cm2)以下,而崩潰電場則可到550 (KV/cm),至於介電常數、殘存極化量及矯頑電場則分別為350、17 (μC/cm2)及310 (KV/cm)。因此鋯酸鉛鋇薄膜很適合作為低漏電與高電荷儲存的FRAM應用。
Abstract
In this work, a new system of sputtered thin films with the composition of (Pb2+1-xBa2+x)(Pb4+1-yZr4+y)O3 (PBZ) were studied. A preferred (100) and (200) texture of PBZ films have been formed on the LaNiO3 (LNO) electrode due to the enhancement from the strong (100) and (200) texture of LNO. The Pb content of the films can be modulated by the excess PbO in the target and the change of substrate temperatures. A simulation model with the composition of the form, (Pb1-xBax)(Pb1-yZry)O3, is proposed to explain the intensity difference in (100) and (200) peaks depending on the Pb4+ content. The compositions obtained from the simulated results are consistent with those from the fitting of XPS spectrum of Pb 4f7/2.
The electrical properties as well as the XRD intensity difference are closely related to the Pb4+ content in PBZ films. A phase transformation from ferroelectric to paraelectric occurs with increasing the Pb4+ content from 0~0.12 to 0.2~0.22 in the PBZ films. For the Pb4+ content less than 0.22, the film performs good electrical properties. The leakage current can be maintained below 10-7 A/cm2 and the breakdown electric field is as high as 550 KV/cm, along with dielectric constant of 350, remanent polarization of 17 μC/cm2 and coercive field of 310 KV/cm. Therefore, thin PBZ film is a promising candidate for low leakage and high charge storage applications in FRAM.
REFERENCE
1. K. Ono, T. Horikawa, T. Shibano, N. Mikami, T. Kuroiwa, T. Kawahara, S. Matsuno, F. Uchikawa, S. Satoh, and H. Abe, “(Ba,Sr)TiO3 Capacitor Technology for Gbit-Scale DRAMs”, IEDM Tech. Dig. (1998) p803-806.
2. M. Sayer and K. Sreenivas, “Ceramic Thin Films: Fabrication and Applications”, Science Vol. 247 (1990) p1056.
3. G. H. Haerting, “Ferroelectric Thin Film for Electronic Applications”, J. Vac. Sci. Tech. Vol. 9A No. 3 (1991) p414.
4. J. F. Scott, C. A. P. de Araujo, L. D. McMillan, H. Yoshimori, H. Watanabe, T. Mihara, M. Azuma, T. Ueda, D. Ueda, and G. Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices”, Ferroelectrics, Vol. 133 (1992) p47.
5. 吳泰伯, “強介電薄膜在半導體記憶體上之應用與發展-機會與挑戰”, 中國材料科學學會1996年度年會論文集, Vol. 2 (1996) p155-158.
6. 林諭男, “強介電陶瓷薄膜的應用”, 工業材料, Vol. 107 (1995) p49.
7. K. Sweetser, “Infrared Imaging with Ferroelectrics”, Integrated Ferroelectrics Vol. 17 No. 1-4 (1997) p349.
8. S. Sengupta, and S. M. Green, “Pulsed Laser Ablation of Ferroelectric Composites for Phased Array Antenna Applications”, Applied Surface Science, 127-129 (1998) p486-490.
9. F. A. Miranda, C. H. Mueller, C. D. Cubbage, and K. B. Bhasin, “HTS/Ferroelectric Thin Films for Tunable Microwave Components”, IEEE Transactions on Applied Superconductivity, Vol. 5 No. 2 June (1995) p3191-3194.
10. Q. X. Jia, Z. Q. Shi, and W. A. Anderson, “BaTiO3 Thin Film Capacitors Deposited by r.f. Magnetron Sputtering”, Thin Solid Films, Vol. 209 (1992) p230.
11. S. Yamamichi, T. Sakuma, K. Takemura, and Y. Miyasaka, “SrTiO3 Thin Film Preparation by Ion Beam Sputtering and Its Dielectric Properties”, Jpn. J. Appl. Phys. Vol. 30 No. 9B (1991) p2193.
12. S. G. Yoon, J. C. Lee, and A. Safari, “Preparation of Thin-Film (Ba0.5Sr0.5)TiO3 by the Laser Ablation Technique and Electrical Properties”, J. Appl. Phys. Vol. 76 No. 5 (1994) p2999.
13. A. Nazeri, M. Kahn, and T. Kidd, “Stronium-Barium-Titanate Thin Films by Sol-Gel Processing”, J. Mater. Sci. Lett. Vol. 14 (1993) p1085.
14. C. S. Chang, T. B. Wu, W. C. Shih, and L. L. Chao, “Dielectric and Electrical Characteristics of Titanium-modified Ta2O5 Thin Films Deposited on Nitrided Polysilicon by Metalorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys. Part 1 Vol. 38 No. 12A p6812-6816.
15. O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter Synthesis of Ferroelectric Films and Heterostructures”, MRS Bulletin , June (1996) p25-30.
16. 陳銘森, “鎳酸鑭電極對鋯鈦酸鉛溶凝膠薄膜製作與特性影響之研究”, 清華大學, 博士論文, (1996).
17. G. Lu, A. Linsebigler, and T. Y. Jr., “Ti3+ Defect Sites on TiO2 (110): Production and Chemical Detection of Active Sites”, J. Phys. Chem. Vol. 98 No. 45 (1994) p11733-11738.
18. G. Balducci, J. Kaspar, P. Forasiero,and M.Graziani, “Surface and Reduction Energetics of the CeO2-ZrO2 Catalyst”, J. Phys. Chem. B Vol. 102 No. 3 (1998) p557-561.
19. A.T. Findikoglu, Q.X. Jia, D.W. Reagor, and X.D. Wu, “Tunable microwave mixing in nonlinear dielectric thin films of SrTiO3 and Sr0.5Ba0.5TiO3”, Electronic Letters, 12th Oct. Vol. 31 No. 21 (1995) p1814-1815.
20. A.T. Findikoglu, Q.X. Jia, and D.W. Reagor, “Superconductor / Nonlinear - Dielectric Bilayers for Tunable and Adaptive Microwave Devices”, IEEE Transactions on Applied Superconductivity, Vol. 17 No. 2 June (1997) p2925-2928.
21. A.C. Carter, J.S. Horwitz, D.B. Chrisey, J.M. Pond, S.W. Kirchoefer, W. Chang, and P. Loferski, “The Effects of High Temperature Annealing and Composition on the Dielectric Properties of Thin Films of BaxSrzTiO3”, Mat. Res. Soc. Symp. Proc. Vol. 493 (1998) p347-352.
22. D. Galt, T. Rivkina, and M.W. Cromar, “Microwave Tuning Quality and Power Handling of Voltage-Tunable Capacitors: Semiconductor Varactors Versus Ba1-xSrxTiO3 Films”, Mat. Res. Soc. Symp. Proc. Vol. 493 (1998) p341-346.
23. J.S. Horwitz, J.M. Pond, B. Tadayan, R.C.Y. Auyeung, P.C. Dorsey, D.B. Chrisey, S.B. Qadri, and C. Muller, “SrxBa(1-x)TiO3 Thin Films for Active Microwave Applications”, Mat. Res. Soc. Symp. Proc. Vol. 3691 (1995) p515-520.
24. Phase Diagram for Ceramists, Fig. 862.
25. S. Robertz, “Dielectric Properties of Lead Zirconate and Barium-Lead Zirconate”, J. Am. Ceram. Soc. Vol. 33 No. 2 (1950) p63-66.
26. G. Seirnet, “Ferroelectricity and Antiferroelectricity in Ceramic PbZrO3 Containing Ba or Sr”, Physical Review Vol. 86 No. 2 (1952) p219-227.
27. K. Yamakawa, K. Wa Gachigi, S. Trolier-McKinstry, and J. P. Dougherty, “Structural and Electrical Properties of Antiferroelectric Lead Zirconate Thin Films Prepared by Reactive Magnetron Co-sputtering”, Journal of Material Science Vol. 32 (1997) p5169-5176.
28. F. S. Galasso, “Perovskites and High Tc Superconductors”, p115.
29. J. T. Evans, and R. Womack, “An Experimental 512-bit Nonvolatile Memory with Ferroelectric Storage Cell”, IEEE Journal of Solid-State Circuits, Vol. 23 No. 5 Oct. (1988) p1171-1175.
30. W. A. Geideman, “Progress in Ferroelectric Memory Technology”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 38 No. 6 Nov. (1991) p704-711.
31. P. K. Larsen, R. Cuppens, and G. A. C. M. Spierings, “Ferroelectric Memories”, Ferroelectrics, Vol. 128 (1992) p265-292.
32. H. Kanai, O. Furukawa, H. Abe, and Y. Yamashita, “Dielectric Properties of (Pb1-xXx)(Zr0.7Ti0.3)O3 (x= Ca, Sr, Ba) Ceramics”, J. Am. Ceram. Soc. Vol. 77 No. 10 (1994) p2620-2624.
33. J. Kato, H. Kagata, and K. Nishimoto, “Dielectric Properties of Alkaline-Earth Zirconate at Microwave Frequencies”, Jpn. J. Appl. Phys. Vol. 30 No. 9B Sep. (1991) p2343-2346.
34. K. Torii. T. Kaga and E. Takeda, “Dielectric Properties of RF-Magnetron-Sputtered (Ba, Pb)(Zr, Ti)O3 Thin Films”, Jpn. J. Appl. Phys. Part 1 Vol. 31 No. 9B Sep. (1992) p2989-2991.
35. K. Yamakawa, S. T. McKinstry, and J. P. Dougherty, “Electrical Properties and Phase Transformations in Antiferroelectric Lead Zirconate Thin Films”, IEEE Tech. Dig. (1996) p405-408.
36. I. Kanno, S. Hayashi, M. Kitagawa, R. Takayama, and T. Hirao, “Antiferroelectric PbZrO3 Thin Films Prepared by Multi-Ion-Beam Sputtering”, Appl. Phys. Lett. Vol. 66 No. 2 Jan. (1995) p145-147.
37. A.J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and applications”, (1990) p52-55 and p61-62.
38. 李雅明, “固態電子學”, 全華科技 (1995).
39. 吳朗, “電子陶瓷-介電”, 全新資訊圖書 (1994).
40. 施修正, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究” , 清華大學, 博士論文, (1999).
41. Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky Barrier Effects in The Electronic Conduction of Sol-Gel derived Lead Zirconate Titanate Thin Film Capacitors”, Journal of Applied Physics, Vol. 84 No. 9 (1998) p5005-5011.
42. I. Stolichnov, and A. Tagantsev, “Space-Charge Influenced-Injection Model for Conduction on Pb(ZrxTi1-x)O3 Thin Films”, Journal of Applied Physics, Vol. 84 No. 6 (1998) p3216-3225.
43. W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites”, MRS Bulletin, July (1996) p40-45.
44. J. H. Joo, Y. C. Jeon, J. M. Seon, K. Y. Oh, J. S. Roh, and J. J. Kim, “Effects of Post-Annealing on the Conductive Properties of Pt/(Ba, Sr)TiO3/Pt Capacitors for Dynamic Random Access Memory Applications”, Jpn. J. Appl. Phys. Part 1 Vol. 36 No. 7A (1997) p4382-4385.
45. J. H. Ahn, G. P. Choi, W. J. Lee, and H. G. Kim, “Pt/RuO2 Hybrid Bottom Electrode and Their Effects on the Electrical Properties of (Ba,Sr)TiO3 Thin Films”, Jpn. J. Appl. Phys. Part 1 Vol. 37 No. 3A (1998) p958-962.
46. Y. T. Kim, and C. W. Lee, “Advantages of RuOx Bottom Electrode in the Dielectric and Leakage Characteristics of (Ba,Sr)TiO3 Capacitor”, Jpn. J. Appl. Phys. Part 1 Vol. 35 No. 12A (1996) p6153-6156.
47. J. H. Ahn, W. Y. Choi, W. J. Lee, and H. G. Kim, “Annealing of RuO2 and Ru Bottom Electrodes and Its Effects on the Electrical Properties of (Ba,Sr)TiO3 Thin Films”, Jpn. J. Appl. Phys. Part 1 Vol. 37 No. 7 (1998) p284-289.
48. D. S. Kil, B. I. Lee and S. K. Joo, “A Study on the Improvement of Charateristics of BST Thin Films Fabricated on Iridium Electrode”, Mat. Res. Soc. Symp. Proc. Vol. 493 (1998), p39-44.
49. S. C. Sun and M. S. Tsai, “Effect of Bottom Electrode Materials on the Electrical and Reliability Characteristics of (Ba,Sr)TiO3 Capacitors”, IEDM Tech. Dig. (1997) p253-256.
50. M. S. Chen, J. M. Wu, and T. B. Wu, “Effects of (100)-Textured LaNiO3 Electrode on crystallization and Properties of Sol-Gel-Derived Pb(Zr0.53Ti0.47)O3 Thin Films”, J. Appl. Phys. Vol.34 (1995) p4870-4875.
51. C. M. Wu, T. J. Hong, and T. B. Wu, “Effects of (100)-Textured LaNiO3 Electrode on the Deposition and Characteristics of PbTiO3 Thin Films Prepared by rf Magnetron Sputtering”, J. Mater. Res. Vol. 12 (1997) p2158-2164.
52. T. F. Tseng, C. C. Yang, K. H. Liou, J. M. Wu, and I. N. Lin, “Crystallization Characteristics of LaNiO3 Layers and Their Effect on Pulsed Laser Deposited (Pb1-xLax)(ZryTi1-y)O3 Thin Films”, J. Appl. Phys. Vol. 35 (1996) p4743-4749.
53. H. S. Shy and T. B. Wu, “Effects of Bottom Electrode on the Structural and Electrical Characteristics of Barium Titanate Thin Films”, Jpn. J. Appl. Phys. Part 1 Vol. 37 No. 7 (1998) p4049-4055.
54. H. S. Shy and T. B. Wu, “Structural and Electrical Characteristics of Ba(Zr0.12Ti0.88)O3 Thin Films Deposited on LaNiO3 Electrode by RF Magnetron Sputtering”, Jpn. J. Appl. Phys. Part 1 Vol. 37 No. 7 (1998) p5638-5644.
55. H. H. Park, I.S. Jin, D. H. Kim, and T. S. Kim, “Effect of Excess Pb and O Content on the Ferroelectric Properties of Sputter Deposited Pb(Zr0.52Ti0.48)O3/Pt System”, Thin Solid Film, 332 (1998) p300-304.
56. S. M. Ha, D. H. Kim, H. H. Park, and T. S. Kim, “Crystallization and Ferroelectric Behavior of Sputter Deposited PZT Using a Target containing Excess Pb and O Contents”, Thin Solid Film, 355-356 (1999) p525-530.
57. H. Ikushima and S. Hayakawa, “Electrical Properties of BaPbO3 Ceramics”, Solid-State Electronics Pergamon Press Vol. 9 (1966) p921-925