簡易檢索 / 詳目顯示

研究生: 梁立言
Liang, Li-Yen
論文名稱: 以鍺(111)及鍺(100)為基底之鉛薄膜熱穩定度比較
Comparison of Thermal Stability Between Pb Films on Ge(111) and on Ge(100)
指導教授: 唐述中
Tang, Shu-Jung
口試委員: 鄭澄懋
鄭弘泰
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 角解析光電子能譜
外文關鍵詞: ARPES, Pb, Cu
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   薄膜的許多性質受到薄膜內的量子尺度效應(Quantum Size Effect)所影響。而鉛薄膜的熱穩定度會隨著薄膜厚度增加而以2層薄膜為週期震盪,並伴隨著周期為9層薄膜的拍(beating)。此震盪及拍現象受到於薄膜中的量子井態在薄膜表面及薄膜與基底的界面的相位差的影響而使熱穩定度震盪中穩定層與不穩定層的層數產生平移或是拍的反轉點位置的整體平移(週期仍為9層)。我們以鍺(100)為基底並使鉛能在上形成二維平坦的整數層鉛薄膜。透過角解析光電子能譜(Angle-Resolved Photoemission Spectroscopy, ARPES)我們能得到不同厚度的鉛薄膜的瓦解溫度,即薄膜的熱穩定度,實驗結果則以Friedel 震盪(Friedel Oscillation)的物理模型擬合。最後將我們的結果與鉛/鍺(111)系統的鉛薄膜熱穩定度作比較,以研究不同基底對於鉛薄膜熱穩定度的影響。


    The properties of thin films are controlled by the Quantum Size Effect in the films. For Pb films, the thickness dependence of thermal stability temperature exhibits bilayer oscillation modulated by a 9 ML beating pattern. The oscillation and beating phenomena are influenced by the phase shift of Quantum Well States at the interfaces of the films. We prepared uniform 2D Pb films on Ge(100), which grow layer by layer. By Angle-Resolved Photoemission Spectroscopy(ARPES) we obtained the thickness dependence of thermal stability temperature of Pb films, and the results are fitted by a model based on Friedel oscillations .Finally, we made a systematical comparison between Pb/Ge(100) and Pb/Ge(111) for the thermal stability to study the influence from the substrate.

    摘要(中文版)....................................i 摘要(英文版)...................................ii 致謝..........................................iii 目次...........................................iv 1 導論..........................................1 2 基礎理論......................................3 2.1 晶格.......................................3 2.2 倒晶格.....................................5 2.3 表面.......................................8 2.4 薄膜生長..................................11 2.4.1 薄膜生長模式...........................11 2.4.2 薄膜厚度...............................13 2.5 表面態....................................14 2.6 量子井態..................................17 2.7 熱穩定度..................................20 3 實驗儀器及原理...............................27 3.1 超高真空..................................27 3.2 光電子能譜................................29 3.2.1簡介....................................29 3.2.2光電效應理論模型........................32 3.2.3角解析光電子能譜........................37 3.3 光源......................................41 3.3.1氦燈....................................42 3.3.2同步輻射................................43 3.4 能量分析儀................................45 3.4.1接收模式................................48 3.4.2解析度..................................49 3.5 低能量電子繞射儀..........................51 4 鉛薄膜.......................................55 4.1 能帶結構與量子化條件......................55 4.2鉛薄膜熱穩定度隨厚度增加的震盪現象.........59 4.3 拍(beating)...............................63 4.4 界面相位差................................68 4.5 Friedel震盪...............................69 5 實驗結果.....................................73 5.1 實驗過程..................................73 5.2 量子井態..................................78 5.2.1定出薄膜厚度............................78 5.2.2量子井態能量分析........................78 5.3熱穩定溫度測定.............................84 5.4與鉛/鍺(111)系統之比較.....................88 6 總結.........................................94 參考資料.......................................96

    [1] Y. Guo, Y.-F. Zhang, X.-Y. Bao, T.-Z. Han, Z. Tang, L.-X. Zhang, W.-G. Zhu, E. Wang, Q. Niu, Z. Qiu, J.-F. Jia, Z.-X. Zhao, and Q.-K.Xue. Science 306, 1915 (2004).
    [2] M. M. □zer, J. R. Thompson, and H. H. Weitering, and Z.Y. Zhang, Nat. Phys. 2, 173 (2006).
    [3] A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, Science 273, 226 (1996).
    [4] L. Gavioli, K. R. Kimberlin, M. C. Tringides, J. F. Wendelken, and Z. Y. Zhang, Phys. Rev. Lett. 82, 129 (1999).
    [5] D.-A. Luh, T. Miller, J. J. Paggel, M. Y. Chou, and T.-C Chiang, Science 292, 1131 (2001).
    [6] C.-S. Jiang, S.-C. Li, H.-B. Yu, D. Eom, X.-D. Wang, P. Ebert, J.-F. Jia, Q.-K. Xue, and C.-K. Shih, Phys. Rev. Lett. 92, 106104 (2004).
    [7] X.-Y. Bao, T.-F. Zhang, Y. Wang, J.-F. Jia, Q.-K. Xue, X. C. Xie, and Z.-X. Zhao, Phys. Rev. Lett. 95, 247005 (2005).
    [8] R. Otero, A. L. Vazquez de Parga, and R. Miranda, Phys. Rev. B 66, 115401 (2002).
    [9] A. Crottini, D. Cvetko, L. Floreano, R. Gotter, A. Morgante, and F. Tommasini, Phys. Rev. Lett. 79, 1527 (1997).
    [10] S.-J. Tang, Wen-Kai Chang, Yu-Mei Chiu, Hsin-Yi Chen, Cheng-Maw Chang, Ku-Ding Tsuei, T. Miller, and T.-C. Chiang, Phys. Rev. B 78, 245407 (2008).
    [11] T.-C. Chiang, Surf. Sci. Rep. 39, 181 (2000).
    [12] C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, 2005.
    [13] http://www.cst0www.nrl.navy.mil/bind/static/example7/index.html
    [14] Hans L□th, Surface and interface of solids Materials, 3rd edition, Springer.
    [15] Dominic A. Ricci, Photoemission Studies of Interface Effects on Thin Film Properties, Ph.D. thesis, University of Illinois at Urbana-Champaign (2006)
    [16] Yu Jia, Biao Wu, H. H. Weitering, and Zhenyu Zhang, Phys. Rev. B 74, 035433 (2006).
    [17] P. Czoschke, Hawoong Hong, L. Basile, and T.-C. Chiang, Phys. Rev. B 72, 075402 (2005).
    [18] Stefan H□fner, Photoelectron Spectroscopy, Springer.
    [19] C. N. Berglund, W. E. Spicer, Phys. Rev. A 136, 1030 and 1044 (1964).
    [20] Andrea Damascelli, Phys. Scr. 2004, 61 (2004).
    [21] http://www.srrc.gov.tw
    [22] User Manual SCIENTA R3000, VG SCUENTA.
    [23] Mary Hope Upton, Photoemission Studies of the Electron Structures and Properties of Thin Lead Films, Ph.D. thesis, University of Illinois at Urbana-Champaign (2005)
    [24] G. Ertl, J. Kppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985).
    [25] Jin-Feng Jia, Shao-Chun Li, Yan-Feng Zhang, and Qi-Kun Xue, J. Phys. Soc. Jpn. 76, 082001 (2007).
    [26] C. M. Wei, and M. Y. Chou, Phys. Rev. B 66, 233408 (2002).
    [27] A. Mans, J. H. Dil, A. R. H. F. Ettema, and H. H. Weitering, Phys. Rev. B 66, 195410 (2002).
    [28] D. A. Ricci, T. Miller, and T.-C. Chiang, Phys. Rev. Lett. 95, 266101 (2005).
    [29] T. Miller, M. Y. Chou, and T.-C. Chiang, Phys. Rev. Lett. 102, 236803 (2009).
    [30] S.D. Kevan, Phys. Rev. B 32, 2344 (1985)
    [31] G. Falkenberg, L. Seehofer, R. Rettig, and R. L. Johnson, Surf Sci. 372, 155 (1997)
    [32] W. S. Yang, X.-D. Wang, K. Cho, J. Kishimoto, T. Hashizume, and T. Sakurai, Phys. Rev. B 51, 7571 (1995).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE