研究生: |
鄭元博 Cheng, Yuan-Po |
---|---|
論文名稱: |
三維無線隨意網路中保證取得資料之資訊經紀系統 Retrieval-Guaranteed Information Brokerage Schemes in 3D Wireless Ad Hoc Networks |
指導教授: | 蔡明哲 |
口試委員: |
蔡明哲
高榮駿 趙禧綠 彭文志 張貴雲 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 資訊經紀系統 、三維無線隨意網路 |
外文關鍵詞: | information brokerage scheme, 3D wireless ad hoc networks |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資訊經紀系統是用於讓資訊的需求者找到感興趣的資料提供者。在此論文中,我
將探討資訊經紀系統的相關議題。就我所知,至今為止可用在三維無限隨意網路
的資訊經紀系統中,取得資訊路徑長、散播資訊路徑長、或取得資訊使用的封包數
都還是無法被限制住的。在此論文中,我提出了一個全新的資訊經紀系統,簡稱
為LAIB。在LAIB中,網路被切割成很多的小方塊。在要散布或取得資訊時,資
訊的需求者和提供者會分別在某些雜湊取得的方塊內尋找或存放資訊。每個資訊
的需求者或提供者只會使用固定數量的方塊,並且至少有一個方塊能使得資訊需求
者用比直接到資訊提供者取得資訊更快的速度取得所需的資訊。模擬實驗的結果
顯示了LAIB在取得資訊路徑長比例、記憶體使用量、封包使用量等方面的效能。
從模擬實驗中我們也可發現,當網路被切分成特定數量的方塊時,LAIB會有最好
的效能。
In this dissertation, I address the problem of information brokerage, where information consumers search for the data acquired by information producers. To the best of my knowledge, there exists no retrieval-guaranteed location-aware information brokerage scheme with a bounded data retrieval path length and bounded replication and retrieval message overhead costs available for use in 3D wireless ad hoc networks to date. In this dissertation, I propose a novel location-aware information brokerage scheme, termed LAIB, where the network area is divided into cube grids, and data are replicated and retrieved in the hashed geographic location in each grid designated by the producer and the consumer, respectively. In LAIB, a polylogarithmic number of grids are designated by the producer and by the consumer, and at least one grid, whose distance from the grid of the consumer is smaller than the distance from the grid of the consumer to the grid of the producer, is designated by both the producer and the consumer. Simulations show that, as the network area is divided into a moderate number of grids, LAIB has good performance in term of retrieval latency stretch while ensuring moderate replication memory, replication message, and retrieval message overhead costs.
[1] A. Abdallah, T. Fevens, and J. Opatrny. Power-aware 3d position-based routing
algorithms for ad hoc networks. In IEEE ICC, 2007.
[2] U. Acer, S. Kalyanaraman, and A. Abouzeid. Weak state routing for largescale
dynamic networks. IEEE/ACM Transactions on Networking, 18:1450–
1463, 2010.
[3] H. Ammari and S. Das. A study of k-coverage and measures of connectivity
in 3d wireless sensor networks. IEEE Transactions on Computers, 59:243–257,
2010.
[4] I. Aydin and C.-C. Shen. Facilitating match-making service in ad hoc and sensor
networks using pseudo quorum. In IEEE ICCCN, 2002.
[5] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guarantee
delivery in ad hoc networks. ACM Wireless Networks, 7:609–616, 2001.
[6] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. ACM Wireless Networks, 7:609–616, 2001.
49
[7] J. Bruck, J. Gao, and A. A. Jiang. MAP: Medial axis based geometric routing
in sensor networks. In IEEE MOBICOM, 2005.
[8] A. Caruso, S. Chessa, S. De, and A. Urpi. GPS free coordinate assignment and
routing in wireless sensor networks. In IEEE INFOCOM, 2005.
[9] M. B. Chena, S. J. Gortlerb, C. Gotsmana, and C. Wormserc. Distributed computation
of virtual coordinates for greedy routing in sensor networks. Discrete
Applied Mathematics, 159:544–560, 2011.
[10] W. Cheng, A. Y. Teymorian, L. Ma, X. Cheng, X. Lu, and Z. Lu. Underwater
localization in sparse 3d acoustic sensor networks. In IEEE INFOCOM, 2009.
[11] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dynamic
graphs. In IEEE INFOCOM, 2009.
[12] D. Eppstein and M. T. Goodrich. Succinct greedy geometric routing using hyperbolic
geometry. IEEE Transactions on Computers, 60:1571–1580, 2010.
[13] Q. Fang, J. Gao, and L. J. Guibas. Locating and bypassing routing holes in
sensor networks. In IEEE INFOCOM, 2004.
[14] Q. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang. GLIDER: Gradient
landmark-based distributed routing for sensor networks. In IEEE INFOCOM,
2005.
[15] R. Flury and R. Wattenhofer. Randomized 3d geographic routing. In IEEE
INFOCOM, 2008.
50
[16] H. Frey and I. Stojmenovic. On delivery guarantees of face and combined greedyface
routing in ad hoc and sensor networks. In ACM MOBICOM, 2006.
[17] H. Frey and I. Stojmenovic. On delivery guarantees and worst-case forwarding
bounds of elementary face routing components in ad hoc and sensor networks.
IEEE Transactions on Computers, 59:1224–1239, 2010.
[18] K. R. Gabriel and R. R. Sokal. A new statistical approach to grographic variation
analysis. Systematic Zoology, 18:259–287, 1969.
[19] S. Ishihara and T. Suda. Replica arrangement scheme for location dependent
information on sensor networks with unpredictable query frequency. In IEEE
ICC, 2009.
[20] R. Jiang, X. Ban, M. Goswami, W. Zeng, J. Gao, and X. Gu. Exploration of
path space using sensor network geometry. In IPSN, 2011.
[21] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In ACM MobiCom, 2000.
[22] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made
practical. In NSDI, 2005.
[23] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks.
In CCCG, 1999.
[24] F. Kuhn, R.Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing:
Of theory and practice. In ACM PODC, 2003.
51
[25] B. Leong, S. Mitra, and B. Liskov. Path vector face routing: Geographic routing
with local face information. In IEEE ICNP, 2005.
[26] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A scalable
location service for geographic ad hoc routing. In ACM MOBICOM, 2000.
[27] X. Li, N. Mitton, I. Simplot-Ryl, and D. Simplot-Ryl. A novel family of geometric
planar graphs for wireless ad hoc networks. In IEEE INFOCOM, 2011.
[28] X. Li, N. Santoro, and I. Stojmenovic. Localized distance-sensitive service discovery
in wireless sensor and actor networks. IEEE Transactions on Computers,
58:1275–1288, 2009.
[29] X.-Y. Li. Approximate MST for UDG locally. In COCOON, 2003.
[30] X.-Y. Li, I. Stojmenovic, and Y. Wang. Partial Delaunay triangulation and
degree limited localized Bluetooth scatternet formation. IEEE Transactions on
Parallel and Distributed Systems, 15:350–361, 2004.
[31] Y. Li and J. Ren. Source-location privacy through dynamic routing in wireless
sensor networks. In IEEE INFOCOM, 2010.
[32] C. H. Lin, B. H. Liu, H. Y. Yang, C. Y. Kao, and M. J. Tsai. Virtual-coordinatebased
delivery-guaranteed routing protocol in wireless sensor networks with unidirectional
links. In IEEE INFOCOM, pages 351–355, 2008.
[33] C.-H. Lin, S.-A. Yuan, S.-W. Chiu, and M.-J. Tsai. Progressface: An algorithm
to improve routing efficiency of GPSR-like routing protocols in wireless ad hoc
networks. IEEE Transactions on Computers, 59:822–834, 2010.
52
[34] C. Liu and J. Wu. Efficient geometric routing in three dimensional ad hoc
networks. In IEEE INFOCOM Mini-Symposium, 2009.
[35] C. Liu and J. Wu. Virtual-force-based geometric routing protocol in MANETs.
IEEE Transactions on Parallel and Distributed Systems, 99:433–445, 2009.
[36] W.-J. Liu and K.-T. Feng. Three-dimensional greedy anti-void routing for wireless
sensor networks. IEEE Transactions on Wireless Communications, 12:5796–
5800, 2009.
[37] H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination
model for large-scale wireless sensor networks. In ACM MOBICOM, 2002.
[38] J. Luo and J.-P. Hubaux. Joint sink mobility and routing to maximize the lifetime
of wireless sensor networks: The case of constrained mobility. IEEE/ACM
Transactions on Networking, 18:871–884, 2010.
[39] H. Ma, X. Zhang, and A. Ming. A coverage-enhancing method for 3d directional
sensor networks. In IEEE INFOCOM, 2009.
[40] H. P. Manning. Geometry of Four Dimensions. The Macmillan Company, 1914.
[41] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith. S4: Small state and small
stretch compact routing protocol for large static wireless network. IEEE/ACM
Transactions on Networking, 18:761–774, 2010.
[42] M. Naghshvar and T. Javidi. Opportunistic routing with congestion diversity in
wireless multi-hop networks. In IEEE INFOCOM, 2010.
53
[43] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas. Landmark
selection and greedy landmark-descent routing for sensor networks. In IEEE
INFOCOM, 2007.
[44] F. Papadopoulos, D. Krioukov, M. Boguna, and A. Vahdat. Greedy forwarding
in dynamic scale-free networks embedded in hyperbolic metric spaces. In IEEE
INFOCOM, 2010.
[45] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
GHT: A geographic hash table for data-centric storage. In ACM WSNA, 2002.
[46] V. Ravelomanana. Extremal properties of three-dimensional sensor networks
with applications. IEEE Transactions on Mobile Computing, 3:246–257, 2004.
[47] S. Ruhrup, H. Kalosha, A. Nayak, and I. Stojmenovic. Message-efficient beaconless
georouting with guaranteed delivery in wireless sensor, ad hoc, and actuator
networks. IEEE/ACM Transactions on Networking, 18:95–108, 2010.
[48] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with guaranteed
delivery using Ricci flows. In IPSN, 2009.
[49] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in
sensor networks. IEEE/ACM Transactions on Networking, 17:1902–1915, 2009.
[50] I. Stojmenovic, D. Liu, and X. Jia. A scalable quorum-based location service in
ad hoc and sensor networks. International Journal of Communication Networks
and Distributed Systems, 1:71–94, 2008.
54
[51] S. Subramanian, S. Shakkottai, and P. Gupta. On optimal geographic routing
in wireless networks with holes and non-uniform traffic. In IEEE INFOCOM,
2007.
[52] S. Subramanian, S. Shakkottai, and P. Gupta. Optimal geographic routing for
wireless networks with near-arbitrary holes and traffic. In IEEE INFOCOM,
2008.
[53] K. J. Supowit. The relative neighborhood graph, with an application to minimum
spanning trees. Journal of the ACM, 30:428–448, 1983.
[54] M.-J. Tsai, F.-R. Wang, H.-Y. Yang, and Y.-P. Cheng. VirtualFace: An algorithm
to guarantee packet delivery of virtual-coordinate-based routing protocols
in wireless sensor networks. In IEEE INFOCOM, pages 1728–1736, 2009.
[55] M.-J. Tsai, H.-Y. Yang, and W.-Q. Huang. Axis-based virtual coordinate assignment
protocol and delivery-guaranteed routing protocol in wireless sensor
networks. In IEEE INFOCOM, 2007.
[56] M.-J. Tsai, H.-Y. Yang, B.-H. Liu, and W.-Q. Huang. Virtual-coordinate-based
delivery-guaranteed routing protocols in wireless sensor networks. IEEE/ACM
Transactions on Networking, 17:1228–1241, 2009.
[57] E. W. Weisstein. Great sphere. MathWorld{A Wolfram Web Resource,
http://mathworld.wolfram.com/GreatSphere.html, 2011.
[58] X. Xiang, X. Wang, and Y. Yang. Stateless multicasting in mobile ad hoc
networks. IEEE Transactions on Computers, 59:1076–1090, 2010.
55
[59] A. Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11:721–736, 1982.
[60] X. Yu, X. Ban, W. Zeng, R. Sarkar, D. Gu, and J. Gao. Spherical representation
and polyhedron routing for load balancing in wireless sensor networks. In IEEE
INFOCOM, 2011.
[61] W. Zeng, R. Sarkar, F. Luo, X. Gu, and J. Gao. Resilient routing for sensor
networks using hyperbolic embedding of universal covering space. In IEEE
INFOCOM, 2010.
[62] C. Zhang, X. Bai, J. Teng, D. Xuan, and W. Jia. Constructing low-connectivity
and full-coverage three dimensional sensor networks. IEEE Journal on Selected
Areas in Communications, 28:984–993, 2010.
[63] F. Zhang, H. Li, A. A. Jiang, J. Chen, and P. Luo. Face tracing based geographic
routing in nonplanar wireless networks. In IEEE INFOCOM, 2007.
[64] R. Zhang, H. Zhao, and M. A. Labrador. A grid-based sink location service for
large-scale wireless sensor networks. In ACM IWCMC, 2006.