研究生: |
王予柔 Wang, Yu Jou |
---|---|
論文名稱: |
考慮過渡沸騰效應的液滴流膜沸騰一維半經驗物理模型之發展 Development of a One-dimensional Semi-empirical Model Considering Transition Boiling Effects For Dispersed Flow Film Boiling |
指導教授: |
潘欽
Pan, Chin |
口試委員: |
廖俐毅
Liao, Li Yi 陳紹文 Chen, Shao Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 液滴流膜沸騰 、後乾化模式 、過度沸騰 、熱不平衡 |
外文關鍵詞: | dispersed flow film boiling, post-dryout, transition boiling |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一個考慮過渡沸騰的乾化後液滴流膜沸騰的一維半經驗物理模型,此模型由四個守恆式組成 (液滴動量、液滴質量、蒸汽質量、蒸汽能量),及相關的組合方程式以考慮液滴流膜沸騰中所有的熱傳方式與其熱傳率。
將模型預測的結果與文獻中的實驗結果作比較,現有的模型可以成功地預測壁面溫度上升的幅度及熱不平衡的情況,且在壓力介於30~140 bar,熱通量204~1837 kW/m2 及質量通率 380~5180 kg/m^2s 的流動條件下,可得到準確的預估結果於方均根(Root mean square) 8.8% 與標準差 8.81%中,證實了本模型的適用性。研究結果指出過渡沸騰區的影響對後乾化模式的準確度十分重要,不可忽略。同時,本研究進一步以靈敏度分析方法探討不同壓力、質量流率與熱通率對於液滴流膜沸騰熱傳的影響,結果呈現了不同流動情況下的液滴受熱量與蒸汽溫度,以探討於不同流動情況之下的熱不平衡現象。
The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e. vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing conditions in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30~140 bar, heat flux of 204~1837 and mass flux of 380~5180 , shows very good agreement with RMS of 8.80% and standard deviation of 8.81% . Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.
1. G.L. Yoder and W.M. Rohsenow, A solution for dispersed flow heat transfer using equilibrium fluid conditions, Journal of Heat Transfer, 105(1) (1983) 10-17.
2. L.S. Tong and Y.S. Tang, Boiling heat transfer and two-phase flow, CRC press, 1997.
3. J.D. Parker and R.J. Grosh, Heat transfer to a mist flow, Argonne National Laboratory, 1961.
4. R.P. Forslund and W.M. Rohsenow, Dispersed flow film boiling, Journal of Heat Transfer, 90(4) (1968) 399-407.
5. A.W. Bennett, G.F. Hewitt, H.A. Kearsey and R.K.F. Keeys, Heat Transfer To Steam-Water Mixtures Flowing In Uniformly Heated Tubes In Which The Critical Heat Flux Has Been Exceeded, Atomic Energy Research Establishment, Harwell, Eng., 1968.
6. K.M. Becker, C.H. Ling, S. Hedberg and G. Strand, An experimental investigation of post dryout heat transfer, Dept. of Reactor Technology, Royal Inst. of Tech., Stockholm, Sweden. , 1983.
7. K. Nishikawa, S. Yoshida, H. Mori and H. Takamatsu, An experiment on the heat transfer characteristics in the post-burnout region at high subcritical pressures, Nuclear Engineering and Design, 74(2) (1983) 233-239.
8. R. Yun and Y. Kim, Post-dryout heat transfer characteristics in horizontal mini-tubes and a prediction method for flow boiling of CO2, International Journal of Refrigeration, 32(5) (2009) 1085-1091.
9. D.C. Groeneveld, Post-dryout heat transfer: physical mechanisms and a survey of prediction methods, Nuclear Engineering and Design, 32(3) (1975) 283-294.
10. D. Groeneveld, Post-dryout heat transfer at reactor operating conditions, Paper presented at the National Topical Meeting on Water Reactor Safety, ANS, Salt Lake City, Utah, March 26-28, 1973.
11. D. Groeneveld and G. Delorme, Prediction of thermal non-equilibrium in the post-dryout regime, Nuclear Engineering and Design, 36(1) (1976) 17-26.
12. L. Leung, N. Hammouda and D. Groeneveld, Development of a look-up table for film-boiling heat transfer covering wide range of flow conditions, Canadian Nuclear Society, Canada, 1996.
13. P. Kirillov, I. Smogalev, A. Ivacshkevitch, V. Vinogradov, M. Sudnitsina and T. Mitrofanova, The look-up table for heat transfer coefficient in post-dryout region for water flowing in tubes (the 1996-version), Preprint FEI-2525, Institute of Physics and Power Engineering, Obninsk, Russia, 1996.
14. D. Groeneveld, L. Leung, Y. Guo and S. Cheng, A look-up table for fully developed film-boiling heat transfer, Nuclear Engineering and Design, 225(1) (2003) 83-97.
15. W.F. Laverty and W.M. Rohsenow, Film boiling of saturated nitrogen flowing in a vertical tube, Journal of Heat transfer, 89(1) (1967) 90-98.
16. A.F. Varone and W.M. Rohsenow, Post dryout heat transfer prediction, Nuclear Engineering and Design, 95 (1986) 315-327.
17. M. Cumo, G.E. Farello and G. Ferrari, The influence of curvature in post dry-out heat transfer, International Journal of Heat and Mass Transfer, 15(11) (1972) 2045-2062.
18. A. Era, G. Gaspari, A. Hassid, A. Milani and R. Zavattarelli, Heat transfer data in the liquid deficient region for steam-water mixtures at 70 kg/cm2 flowing in tubular and annular conduits, Centro Informazioni-Studi Esperienze, Milan, Italy, 1967.
19. Y. Guo and K. Mishima, A non-equilibrium mechanistic heat transfer model for post-dryout dispersed flow regime, Experimental Thermal And Fluid Science, 26(6) (2002) 861-869.
20. K.H. Sun, J.M. Gonzalez-Santalo and C.L. Tien, Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions, Journal of Heat Transfer, 98(3) (1976) 414-420.
21. K.J. Baumeister, T.D. Hamill and G.J. Schoessow, A generalized correlation of vaporization times of drops in film boiling on a flat plate, NASA Lewis Research Center, Cleveland, OH, United States, 1966.
22. O.C. Iloeje, A study of wall rewet and heat transfer in dispersed vertical flow, in, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, United States, 1975.
23. M. Andreani and G. Yadigaroglu, Prediction methods for dispersed flow film boiling, International journal of multiphase flow, 20 (1994) 1-51.
24. M. Andreani and G. Yadigaroglu, A 3-D Eulerian-Lagrangian model of dispersed flow film boiling including a mechanistic description of the droplet spectrum evolution—I. The thermal-hydraulic model, International journal of heat and mass transfer, 40(8) (1997) 1753-1772.
25. M. Andreani and G. Yadigaroglu, A 3-D Eulerian-Lagrangian model of dispersed flow film boiling—II. Assessment using quasi-steady-state data and comparison with the results of 1-D analyses, International journal of heat and mass transfer, 40(8) (1997) 1773-1793.
26. M.J. Meholic, D.L. Aumiller and F.B. Cheung, A comprehensive, mechanistic heat transfer modeling package for dispersed flow film boiling–Part 1–Development, Nuclear Engineering and Design, 291 (2015) 295-301.
27. M.J. Meholic, D.L. Aumiller and F.B. Cheung, A comprehensive, mechanistic heat transfer modeling package for dispersed flow film boiling—Part 2—Implementation and assessment, Nuclear Engineering and Design, 291 (2015) 302-311.
28. P. Saha, A nonequilibrium heat transfer model for dispersed droplet post-dryout regime, International Journal of Heat and Mass Transfer, 23(4) (1980) 483-492.
29. S.W. Webb and J.C. Chen, A numerical model for turbulent non-equilibrium dispersed flow heat transfer, International Journal of Heat and Mass Transfer, 25(3) (1982) 325-335.
30. N.H. Nguyen and S.K. Moon, An improved heat transfer correlation for developing post-dryout region in vertical tubes, Nuclear Engineering and Technology, 47(4) (2015) 407-415.
31. J.J. Carbajo, A study on the rewetting temperature, Nuclear Engineering and Design, 84(1) (1985) 21-52.
32. J.B. Heineman, An experimental investigation of heat transfer to superheated steam in round and rectangular channels, Argonne National Lab., III, United States., 1960.
33. K. Lee and D.J. Ryley, The evaporation of water droplets in superheated steam, Journal of Heat Transfer, 90(4) (1968) 445-451.
34. A. Sully, E. Brandes and R. Waterhouse, Some measurements of the total emissivity of metals and pure refractory oxides and the variation of emissivity with temperature, British Journal of Applied Physics, 3(3) (1952) 97.
35. M. Ishii and N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE Journal, 25(5) (1979) 843-855.
36. S.Y. Ahmad, Axial distribution of bulk temperature and void fraction in a heated channel with inlet subcooling, Journal of Heat Transfer, 92(4) (1970) 595-609.
37. M. Kawaji, Transient non-equilibrium two-phase flow: reflooding of a vertical flow channel, California Univ., Berkeley (USA), 1984.