簡易檢索 / 詳目顯示

研究生: 郭豐綱
Guo, Fong-Gang
論文名稱: 利用電鍍銅銦金屬層及後硒化方式製備銅銦硒太陽電池吸收層
Preparation of CuInSe2 Absorber Layers by Selenization of Electrodeposited Cu-In Metal Films for Solar Cell
指導教授: 李志浩
Lee, Chih-Hao
邱秋燕
Chiu, Chiu-Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 銅銦硒電鍍
外文關鍵詞: CuInSe2, CIGS
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以電鍍Cu-In金屬層配合後硒化方式成功製備CuInSe2吸收層,並在0.12 cm2量測到9.3%的最高效率。電鍍Cu-In金屬之前以濺鍍法沉積一層Mo金屬於玻璃上,發現當Mo厚度大於100 nm時其片電阻及可見光反射率已趨向於定值但在此製程參數下仍有應力過大(5~7 GPa)及易剝落的問題,固參考NREL等文獻後希望利用雙層的結構並將厚度控制在0.5μm以下。完成電鍍Cu-In金屬後將之與硒碇一起放入管爐內進行硒化反應發現In較Cu先與Se反應產生二元硒化物並在約300~350℃時產生分層的現象即CuSex聚集在表面而InSex則傾向聚集在Mo背電極,隨著溫度升高至450~500℃此分層現象消失最後形成一均勻的CuInSe2薄膜。在Cu-In金屬硒化過程當中Mo背電極通常也參與反應生成MoSe2,少量(100~200 nm)有助於增加與CuInSe2的附著性但若Mo與過量Se反應而完全生成MoSe2或剩餘少量的Mo則增加電池的串聯電阻,因此我們提出利用控制Se分壓的兩階段硒化法來達到Cu-In金屬被硒化生成CuInSe2而Mo 背電極只少量被硒化使得MoSe2的厚度小於500 nm。


    CuInSe2 absorber layer prepared by electrodeposited Cu-In metal precursor followed by selenization has been successfully fabricated and the device with 9.3% efficiency on 0.12 cm2 were demonstrated. First, single layer Mo films with different thickness are sputtered on glass and found the sheet resistance and reflectance of visible light approach to a constant value when thickness greater than 100 nm. Sputtered Mo films were under tensile stress (5~7 GPa) and easy exfoliation, thus we conclude a better Mo structure with bilayer and 0.5μm thickness followed the NREL and others results.
    After electrodepositing Cu-In metal films, the samples were put into tube furnace with Se pieces for selenization. By XAS analysis that In is easilier to react with Se than that of Cu to form binary selenides. During the selenization at 300~350℃ films tend to form bilayer structure with CuSex on top and InSex near the Mo back contact. The film transformed to CuInSe2 uniformly after selenization at 450~500℃.
    The other issue is MoSe2 formation during selenization, it improves the adhesion at CIS/Mo interface if a moderate thickness (100~200 nm) was formed but it also increases the series resistance of solar cell for a thick MoSe2 (almost Mo were selenized ). We propose a two steps selenization process for supplying overdose Se at first then reducing Se at final step to control MoSe2 thickness below 500 nm without affecting CuInSe2 grain growth.

    第一章 序論 1-1 太陽電池種類 1-2 Cu(In,Ga)Se2 太陽電池簡介 1-3 研究動機 第二章 文獻回顧 2-1 太陽電池基本原理 2-2 太陽光譜 2-3 銅基黃銅礦(Cu-based Chalcopyrit)結構及特性 2-3-1 Cu-In-Se三元相圖(phase diagram) 2-3-2 材料結構 2-3-3光電特性 2-3-4 CIS/CIGS表面及晶界 2-4 元件結構及製程 2-5 元件物理 2-5-1 能帶結構(band diagram) 2-5-2 異質接面的二極體特性 2-5-3電阻對太陽電池的影響 2-6 CuInSe2/Cu(In,Ga)Se2吸收層的製備 2-6-1電沉積原理 2-6-2 各國電沉積CIGS概況 第三章 儀器與分析 3-1 實驗儀器 3-1-1 濺鍍系統 3-1-2 電鍍系統 3-1-3 硒化系統 3-2 量測分析 3-2-1 X光繞射分析(XRD) 3-2-2 X光吸收光譜(XAS) 3-2-3 掃描式電子顯微鏡(SEM)及能量散佈儀(EDS) 3-2-4 X光光電子能譜儀(XPS) 3-2-5 原子力顯微鏡(AFM) 3-2-6 紫外-可見-紅外光譜儀(UV-Vis-NIR) 3-2-7 量子轉換效率(Incident Photon to Current Efficiency,IPCE) 3-2-8 電壓-電流曲線(I-V curev) 3-2-9 四點探針(4-point probe) 第四章 太陽電池的製備 4-1 鉬背電極( Mo back contact ) 4-2 CuInSe2吸收層(absorber layer) 4-2-1 電鍍Cu、In金屬層 4-2-2 銅銦金屬層的硒化 4-3 CdS緩衝層 4-4 ZnO及透明導電層AZO(ZnO:Al) 第五章 結果與討論 5-1鉬背電極(Mo back contact) 5-2 CuInSe2吸收層 5-2-1 銅銦合金 5-2-1 銅銦合金的硒化 5-2-3 XPS、EDS及SIMS 5-3硒化反應對Mo背電極的影響 5-4 CuInSe2/Mo介面間MoSe2的生成及抑制 5-5 太陽電池元件效率量測 第六章 結論 第七章 未來建言 第八章 參考文獻 第九章 附錄-- RF濺鍍機台操作手冊

    1. Sheppard, C.J., Formation of CuIn(Se,S)2 and Cu(In,Ga)(Se,S)2 thin films by chalcogenization of sputtered metallic alloys. PhD thesis, University of Johannesburg, Department of Physics, 2008.
    2. Anderson, T., Processing of CuInSe2-Based Solar Cells: Characterization of Deposition Processes in Terms of Chemical Reaction Analyses. Phase II Annual Report, NREL/SR-520-27296, 1999.
    3. Haug, F.-J., Development of Cu(In,Ga)Se2 Superstrate Thin Film Solar Cells, in Department of physics. 2001, SWISS FEDERAL INSTITUTE OF TECHNOLOGY.
    4. Hegedus, A.L.a.S., Handbook of Photovoltaic Science and Engineering. 2003, John Wiley & Sons, Ltd.
    5. Konovalov, I., Material requirements for CIS solar cells. Thin Solid Films, 2004. 451: p. 413-419.
    6. Goetzberger, A., C. Hebling, and H.W. Schock, Photovoltaic materials, history, status and outlook. Materials Science & Engineering R-Reports, 2003. 40(1): p. 1-46.
    7. Jaffe, J.E. and A. Zunger, THEORY OF THE BAND-GAP ANOMALY IN ABC2 CHALCOPYRITE SEMICONDUCTORS. Physical Review B, 1984. 29(4): p. 1882-1906.
    8. Liao, D.X. and A. Rockett, Cu depletion at the CuInSe2 surface. Applied Physics Letters, 2003. 82(17): p. 2829-2831.
    9. Jaffe, J.E. and A. Zunger, Defect-induced nonpolar-to-polar transition at the surface of CuInSe2. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1547-1552.
    10. Contreras, M.A., M.J. Romero, and R. Noufi, Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells. Thin Solid Films, 2006. 511-512: p. 51-54.
    11. Hanna, G., et al., Texture and electronic activity of grain boundaries in Cu(In,Ga)Se-2 thin films. Applied Physics a-Materials Science & Processing, 2006. 82(1): p. 1-7.
    12. Rau, U. and H.W. Schock, Electronic properties of Cu(In,Ga)Se-2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Applied Physics a-Materials Science & Processing, 1999. 69(2): p. 131-147.
    13. van Dyk, E.E. and E.L. Meyer, Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renewable Energy, 2004. 29(3): p. 333-344.
    14. A. Romeo , M.T., D. Abou-Ras , D. L. Bätzner , F.-J. Haug , M. Kälin , D. Rudmann , A. N. Tiwari Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Prog. Photovolt: Res. Appl., 2004. 12(2-3): p. 93-111.
    15. Kapur, V.K., B.M. Basol, and E.S. Tseng, Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells. Solar Cells, 1987. 21(1-4): p. 65-72.
    16. Prosini, P.P., et al., Electrodeposition of copper-indium alloy under diffusion-limiting current control. Thin Solid Films, 1996. 288(1-2): p. 90-94.
    17. Lincot, D., et al., Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, 2004. 77(6): p. 725-737.
    18. Vedel, L.T.a.J., Electrodeposition and Characterization of CulnSe2 Thin Films. J. Electrochem. Soc., 1995. 142(9): p. 2996-3001.
    19. Oda, Y., et al., Crystallization of In-Se/CuInSe2 thin-film stack by sequential electrodeposition and annealing. Journal of Crystal Growth, 2009. 311(3): p. 738-741.
    20. Taunier, S., et al., Cu(In,Ga)(S,Se)(2) solar cells and modules by electrodeposition. Thin Solid Films, 2005. 480: p. 526-531.
    21. Sene, C., et al., Electrodeposition of CuInSe2 absorber layers from pH buffered and non-buffered sulfate-based solutions. Thin Solid Films, 2008. 516(8): p. 2188-2194.
    22. Kampmann, A., et al., Large area electrodeposition of Cu(In,Ga)Se-2. Thin Solid Films, 2000. 361: p. 309-313.
    23. Ganchev, M., et al., Preparation of Cu(In,Ga)Se-2 layers by selenization of electrodeposited Cu-In-Ga precursors. Thin Solid Films, 2006. 511: p. 325-327.
    24. Kang, F., et al., Structure and photovoltaic characteristics of CuInSe2 thin films prepared by pulse-reverse electrodeposition and selenization process. Journal of Alloys and Compounds, 2009. 478(1-2): p. L25-L27.
    25. Bhattacharya, R.N., et al., Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers. Applied Physics Letters, 1999. 75(10): p. 1431-1433.
    26. Oda, Y., et al., Fabrication of Cu(In, Ga)Se-2 thin film solar cell absorbers from electrodeposited bilayers. Current Applied Physics, 2010. 10: p. S146-S149.
    27. Qiu, C.X., Shih, I., Thin film cells on electrodeposited CuInSe2. Proceedings of the Eighth European Photovoltaic Solar Energy Conference, 1988: p. 1051–1055.
    28. Pern, F.J., et al., Device quality thin films of CuInSe2 by a one-step electrodeposition process. Solar Cells, 1988. 24(1-2): p. 81-90.
    29. J.F. Guillemoles, P.C., S. Massaccesi, L. Thouin, S. Sanchez, D. Lincot and J. Vedel, Electrodeposited copper indium diselenide thin films based solar cells with improved efficiencies. Adv. Mater., 1994. 6: p. 6379–6381.
    30. Qiu, S.N., et al., Study of CuInSe2 thin films prepared by electrodeposition. Solar Energy Materials and Solar Cells, 1995. 37(3-4): p. 389-393.
    31. Kampmann, A., et al., Large area electrodeposition of Cu(In,Ga)Se2. Thin Solid Films, 2000. 361-362: p. 309-313.
    32. Voss, T., Muffler, H.J., Schulze, J., Meyer, H., Lux Steiner, M.C., Niesen, T.P., Electrodeposition of CuInSe2. Proceedings of Photovoltaics in Europe, V2.33, 2002.
    33. R.N. Bhattacharya, A.M.F., M.A. Contreras, J. Keane, A.L. Tennant, K. Ramanathan, J.R. Tuttle, R.N. Noufi and A.M. Hermann, Electrodeposition of In–Se, Cu–Se, and Cu–In–Se thin films. J. Electrochem. Soc., 1996. 143: p. 854–858.
    34. R.N. Bhattacharya, H.W., T.A. Berens, R.J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason and R.N. Noufi, 12.3% efficient CuIn1−xGaxSe2-based device from electrodeposited precursor. J. Electrochem. Soc., 1997. 144: p. 1376–1379.
    35. R.N. Bhattacharya, W.B., H. Wiesner, F. Hasoon, J.E. Granata, K. Ramanathan, J. Alleman, J. Keane, A. Mason, R.J. Matson and R.N. Noufi, 14.1% CuIn1−xGaxSe2-Based photovoltaic cells from electrodeposited precursors. J. Electrochem. Soc., 1998. 145: p. 3435–3440.
    36. Bhattacharya, R.N. and A.M. Fernandez, CuIn1-xGaxSe2-based photovoltaic cells from electrodeposited precursor films. Solar Energy Materials and Solar Cells, 2003. 76(3): p. 331-337.
    37. Penndorf, J., et al., CuInS2 thin film formation on a Cu tape substrate for photovoltaic applications. Solar Energy Materials and Solar Cells, 1998. 53(3-4): p. 285-298.
    38. Rechid, J., Thyen, R., Raitzig, A., Wulff, S., Mihhailova, M., Kalberlah, K., Kampmann, Electrodeposition of CIGS on metal substrates. Proceedings of the Third World Conference on Photovoltaic Solar Energy Conversion, 2003: p. 559–561.
    39. B. M. Başol, M.P., S. Aksu, J. Wang, Y. Matus, T. Johnson, Y. Han, M. Narasimhan and B. Metin, ELECTROPLATING BASED CIGS TECHNOLOGY FOR ROLL-TO-ROLL MANUFACTURING. Valencia conference, 2008.
    40. 吳建良, 以電化學沉積法製備銅銦硒薄膜太陽電池之吸收層抗反射透明導電層與背部電極. 2008, 國立清華大學碩士論文.
    41. Newville, M. Fundamentals of X-ray Absorption Fine Structure.
    42. Scofield, J.H., et al., SPUTTERED MOLYBDENUM BILAYER BACK CONTACT FOR COPPER INDIUM DISELENIDE-BASED POLYCRYSTALLINE THIN-FILM SOLAR-CELLS. Thin Solid Films, 1995. 260(1): p. 26-31.
    43. Vink, T.J., et al., STRESS, STRAIN, AND MICROSTRUCTURE OF SPUTTER-DEPOSITED MO THIN-FILMS. Journal of Applied Physics, 1991. 70(8): p. 4301-4308.
    44. Kamikawa-Shimizu, Y., et al., Effects of Mo back contact thickness on the properties of CIGS solar cells. Physica Status Solidi a-Applications and Materials Science, 2009. 206(5): p. 1063-1066.
    45. Zhang, S.B. and S.H. Wei, Reconstruction and energetics of the polar (112) and (1-bar1-bar2-bar) versus the nonpolar (220) surfaces of CuInSe2. Physical Review B, 2002. 65(8): p. 081402.
    46. Chaisitsak, S., A. Yamada, and M. Konagai, Preferred orientation control of Cu(In1-xGax)Se-2 (x approximate to 0.28) thin films and its influence on solar cell characteristics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002. 41(2A): p. 507-513.
    47. Gobeaut, A., et al., Influence of secondary phases during annealing on re-crystallization of CuInSe2 electrodeposited films. Thin Solid Films, 2009. 517(15): p. 4436-4442.
    48. Pearce, C.I., et al., Copper oxidation state in chalcopyrite: Mixed Cu d(9) and d(10) characteristics. Geochimica Et Cosmochimica Acta, 2006. 70(18): p. 4635-4642.
    49. Yao, J.L., et al., Site Preference of Manganese on the Copper Site in Mn-Substituted CuInSe2 Chalcopyrites Revealed by a Combined Neutron and X-ray Powder Diffraction Study. Chemistry of Materials, 2010. 22(5): p. 1647-1655.
    50. Han, S.H., et al., Spectroscopic evidence for a surface layer in CuInSe2 : Cu deficiency. Applied Physics Letters, 2007. 91(2).
    51. Bilger, G., P.O. Grabitz, and A. Strohm, Copper-indium-gallium-diselenide/molybdenum layers analyzed by corrected SIMS depth profiles. Applied Surface Science, 2004. 231: p. 804-807.
    52. Repins, I., et al., 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics, 2008. 16(3): p. 235-239.
    53. Lee, J.C., et al., RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se-2-based solar cell applications. Solar Energy Materials and Solar Cells, 2000. 64(2): p. 185-195.
    54. Liu, F.Y., et al., Characterization of chemical bath deposited CdS thin films at different deposition temperature. Journal of Alloys and Compounds, 2010. 493(1-2): p. 305-308.
    55. Datta, T., R. Noufi, and S.K. Deb, ELECTRICAL-CONDUCTIVITY OF P-TYPE CUINSE2 THIN-FILMS. Applied Physics Letters, 1985. 47(10): p. 1102-1104.
    56. Hankare, P.P., et al., Characterization of MoSe2 thin film deposited at room temperature from solution phase. Journal of Crystal Growth, 2008. 311(1): p. 15-19.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE