簡易檢索 / 詳目顯示

研究生: 簡銘萱
Ming-Hsuan Chien
論文名稱: 探討利用原子層化學氣相沉積法鍍製Al2O3、HfO2之高介電結構薄膜,應用在奈米尺度世代DRAM影響之電性研究
Electrical properties of Al2O3-HfO2 dielectric capacitors using atomic layer deposition in metal-insulator-metal configuration
指導教授: 吳泰伯
Tai-bor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 原子層化學氣相沉積高介電薄膜
外文關鍵詞: Atomic Layer Deposition, Metal-insulator-metal, DRAM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以原子層化學氣相沉積法(Atomic layer chemical deposition, or ALCVD)鍍製高介電薄膜,因ALCVD具有極佳的厚度控制能力、均勻覆蓋能力以及低鍍膜溫度等優點,為許多鍍製超薄膜方法中最具吸引力的。在鍍製Al2O3和HfO2時採用TMA (Trimethylaluminum)作為Al的先趨物,TEMAH (tTetrakis(ethylme))作為Hf的先趨物,兩者皆以H2O作為氧化劑。
    本實驗使用MIM(Metal-Insulator-Metal)電容結構,以避免MIS (Metal-Insulator-Silicon)結構於介面形成SiO2而降低電容值的問題。使用的兩種底電極為經In-situ表面電漿處理過Pt基板及TiN基板,採用Au-Ti為上電極。本實驗研究重點在於利用ALCVD鍍製三種不同薄膜結構:分別為(HfO2/Al2O3)*3、HfAlOX及純HfO2結構薄膜,當中HfO2與Al2O3的成分比皆為2:1,薄膜厚度為7.2nm。探討不同結構薄膜電容以及熱處理溫度對電性的影響與研究。


    目錄 第一章 序論--------------------------------------------1 1-1研究背景----------------------------------------------1 1-2研究動機----------------------------------------------2 1-3研究目標----------------------------------------------6 第二章 文獻回顧---------------------------------------12 2-1 嵌入式DRAM技術-------------------------------------12 2-2 (HfO2/Al2O3)*3、HfAlOX及純HfO2薄膜--------------------13 2-3 (HfO2/Al2O3)*3、HfAlOX及純HfO2薄膜製備方法------------14 2-4 原子層化學氣相沉積法(ALCVD)-------------------------17 2-5 ALCVD技術優缺點-------------------------------------21 2-6 電極的選擇------------------------------------------23 2-6-1 Pt電極----------------------------------------23 2-6-2 TiN電極---------------------------------------25 2-7 介電分析--------------------------------------------26 2-7-1 介電常數--------------------------------------26 2-7-2 介電損失--------------------------------------29 2-7-3 介電強度--------------------------------------31 2-8 漏電流----------------------------------------------33 第三章 實驗步驟---------------------------------------51 3-1 薄膜電容的製作--------------------------------------51 3-1-1 下電極製作------------------------------------51 3-1-2 In-situ表面電漿處理---------------------------52 3-1-3 介電薄膜沉積----------------------------------53 3-1-4 (HfO2/Al2O3)*3、HfAlOX及純HfO2介電薄膜快速 熱退火處理-----------------------------------54 3-1-5 上電極製作------------------------------------54 3-2 薄膜的量測與分析------------------------------------56 3-2-1 膜厚量測 -------------------------------------56 3-2-2 微觀結構--------------------------------------56 3-2-3 X光光電子能譜分析-----------------------------56 3-2-4 高溫PDA處理對薄膜結晶情形分析----------------57 3-2-5高溫處理PDA對薄膜介面原子擴散情形分析—-------57 3-2-6 介電常數與逸散因子量測------------------------57 3-2-7 電流-電壓量測---------------------------------57 第四章 結果與討論-------------------------------------69 4-1 (Al2O3/HfO2)x3、HfAlOx、HfO2高介電薄膜微結構分析-------69 4-1-1 Pt底電極、TiN底電極上的AFM表面結構分析-----69 4-1-2 不同結構介電薄膜鍍製在Pt底電極上的AFM表面型態 --------------------------------------------------70 4-1-3 X光光電子能譜分析(XPS)----------------------70 4-1-4 TEM結構分析---------------------------------71 4-1-5 GIXRD薄膜結晶分析---------------------------71 4-2 (Al2O3/HfO2)x3、HfAlOx、HfO2高介電薄膜成分分析---------72 4-2-1 SIMS(Secondary Ion Mass Spectrometer)分析----72 4-2-2 Auger電子能譜分析----------------------------72 4-3 (Al2O3/HfO2)x3、HfAlOx、HfO2高介電薄膜電性分析----------73 4-3-1高介電薄膜電性在不同底電極上的表現:J-V--------73 4-3-2 (Al2O3/HfO2)*3、HfAlOX、HfO2高介電薄膜J-V比較—74 4-3-3 漏電流隨著PDA溫度變化分析-------------------74 4-3-4 (Al2O3/HfO2)*3、HfAlOX、HfO2高介電薄膜的介電常數/ 電容密度與PDA溫度的關係---------------------------75 4-3-5 (Al2O3/HfO2)*3、HfAlOX、HfO2高介電薄膜之逸散因子的表現--------------------------------------------76 第五章 結論-------------------------------------------90 第六章 參考文獻---------------------------------------92 圖目錄 圖1-1 ㄧ九七o年代Intel推出一一o三記憶體----------------7 圖1-2 DRAM的應用範圍-------------------------------------7 圖1-3 記憶體的種類----------------------------------------8 圖1-4電晶體電容型的記憶單元------------------------------8 圖1-5 DRAM電容面積發展-----------------------------------9 圖1-6不同熱處理溫度下poly-Si 表面變化情形----------------9 圖2-1邏輯線路和DRAM製程的示意圖-------------------------38 圖2-2與Si接合後有良好熱穩定性之週期表元素--------------38 圖2-3各種high-k 材料與Si接合之能帶圖-------------------39 圖2-4 CVD系統: 冷腔壁(cold-wall)式和熱槍壁(hot-wall)----40 圖2-5 CVD五種主要反應機制-------------------------------41 圖2-6 APCVD反應設備圖-----------------------------------41 圖2-7 LPCVD反應設備圖-----------------------------------41 圖2-8 PECVD反應設備圖-----------------------------------42 圖2-9 ECRCVD反應設備圖----------------------------------42 圖2-10 表面達飽和狀態------------------------------------42 圖2-11 理想鍍膜cycle數與膜厚成比例----------------------43 圖2-12 ALCVD(a) the growth curve(b) the GPC(c) the change in the GPC(Growth per cycle)--------------------------------43 圖2-13 水平式和垂直式ALCVD反應腔體----------------------44 圖2-14 ALCVD反應機制(以成長Al2O3為例)--------------------45 圖2-15 不同氣流量比例、基板溫度與PtOx相形成的關係-------46 圖2-16 成長半球型晶粒之Si示意圖-------------------------46 圖2-17 材料四種極化機構之示意圖(a)電子極化(b)離子極化(c)固有電矩的轉向極化(d)空間電荷極化--------------------------47 圖2-18 介電質中不同極化機構與頻率之關係------------------48 圖2-19 (a)實際電容之等效電路圖(b)其電壓電流的相位關係圖—48 圖2-20 三種介電損失途徑對頻率變化之關係圖----------------49 圖2-21 能障限制之傳導機制: (a)蕭特基發射(b)穿隧效應------49 圖2-22 本體限制之傳導機制: (a)空間電荷限制傳導 (b)離子傳導 (c)普爾-夫倫克爾效應------------------------------50 圖3-1 實驗製程流程圖-------------------------------------66 圖3-2 ALCVD製程設備--------------------------------------67 圖3-3 量測分析流程圖-------------------------------------68 圖4-1(a) HfO2介電薄膜鍍製在水氣電漿處理過的Pt底電極上,經過PDA 400oC的AFM表面型態圖(b) HfO2介電薄膜鍍製在TiN底電極上,經過PDA400oC的AFM表面型態圖----------------------------78 圖4-2 (a) PDA溫度600OC,Au-Ti/HfO2/Pt AFM表面型態圖(b) PDA溫度600OC,Au-Ti/HfAlOx/Pt AFM表面型態(c) PDA溫度600OC,Au-Ti/(Al2O3/HfO2)x3/Pt AFM表面型態圖----------------------79 圖4-3 三種不同介電薄膜結構鍍製在Pt底電極上,經過PDA 400oC處理後XPS分析-------------------------------------------80 圖4-4 (a) Au-Ti/(Al2O3/HfO2)x3/Pt疊層介電薄膜結構,在經過PDA 400oC處理以後TEM影像圖(b) Au-Ti/HfAlOX/Pt 混合介電薄膜結構,在經過PDA 400oC處理以後TEM影像圖------------------------80 圖4-5 (a)u-Ti/HfO2/Pt GIXRD分析(b)Au-Ti/HfO2/TiN GIXRD分析---------------------------------------------------------81圖4-6(a) Au-Ti/HfAlOX/TiN GIXRD分析(b) Au-Ti/ (HfO2/Al2O3)*3/ TiN GIXRD分析--------------------------------------------82 圖4-7 (a) (Al2O3/HfO2)x3/ TiN薄膜結構SIMS分析(b) HfAlOx/TiN 薄膜結構SIMS分析------------------------------------------83 圖4-8 (a) (Al2O3/HfO2)x3/ TiN薄膜結構Ti元素之SIMS分析局部圖(b) HfAlOx/TiN 薄膜結構Ti元素之SIMS分析局部圖---------84 圖4-9(a)(Al2O3/HfO2)*3/Pt,as deposited條件下歐傑電子能譜分析(b)(Al2O3/HfO2)*3/Pt 經過PDA 600OC處理後歐傑電子能譜分析-85 圖4-10 三種不同結構介電薄膜在Pt底電極上,經過不同RTA溫度的 J-V關係----------------------------------------------86 圖4-11 三種不同結構介電薄膜在TiN底電極上,經過不同RTA溫度的J-V關係圖---------------------------------------------86 圖4-12 在白金基板上,介電常數/電容密度隨著PDA溫度改變關係圖-------------------------------------------------------87 圖4-13 在TiN基板上,介電常數/電容密度隨著PDA溫度改變關係圖-------------------------------------------------------87 圖4-14 (Al2O3/HfO2)*3、HfAlOX、pure HfO2三種不同結構的介電薄膜鍍製在Pt、TiN底電極上,逸散因子對應PDA溫度的關係圖-----88 表目錄 表1-1數種二元氧化物基本特性-----------------------------10 表1-2數種典型之高介電薄膜材料---------------------------10 表1-3 ITRS2005下世代DRAM電容之介電材料與電極-----------11 表2-1 各種high-k 材料性質比較---------------------------39 表2-2 蒸鍍法(Evaporation)、濺鍍法(Sputter)和分子束磊晶成長(Molecular Beam Epitaxy,MBE)比較表-----------------------40 表2-3 數種金屬與矽之功函數-------------------------------44 表2-4 ALCVD(即表中的AVCD)與一般CVD成長TiN之比較--------47 表3-1 Pt鍍膜條件----------------------------------------59 表3-2 Al先趨物的基本特性--------------------------------59 表3-3 Hf之先趨物基本特性--------------------------------60 表3-4 (Al2O3/HfO2)*3薄膜之ALCVD製程參數------------------61 表3-5 HfAlOX薄膜之ALCVD製程參數-------------------------62 表3-6 pure HfO2薄膜之ALCVD製程參數-----------------------63 表3-7 為(Al2O3/HfO2)x3、HfAlOx、HfO2製程cycle數與厚度-----64 表3-8 ALCVD電漿製程參數----------------------------------64 表3-9 上電極Au-Ti之蒸鍍條件-----------------------------65 表4-1 RMS比較表------------------------------------------89 表4-2 外加電壓-1.2V對應的漏電流比較表-------------------89

    第六章 參考文獻
    1. 虞有澄,”我看英代爾”,天下文化 [1995]
    2. 黃維邦,”利用Pt(O)電極開發五氧化二鉭(Ta2O5)薄膜之選擇性化學氣相沉積技術研究”,清華大學碩士論文 [2001]
    3. “未來DRAM發展趨勢”,新電子科技雜誌,153 [1998/12]
    4. 林振華、林振富,”ULSI DRAM技術”,全華科技圖書股份有限公司 [2001]
    5. 張志祥、吳泰伯,”G bit DRAM應用之強介電薄膜技術與發展”,材料會訊,4(3) [1997]
    6. D. E. Kotecki,”High-k dielectric materials for DRAM capacitors”, Semiconductor International, 109 [1999]
    7. 曾鴻輝,”動態隨機存取記憶體之電容器的製造方法”,電子資訊 4(1),14 [1998]
    8. A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions for DRAM Memory Cell Technology”, IEDM 98 [1998]

    9. K. N. Kim, H. S. Jeong, G. T. Jeong, C. H. Cho, W. S. Yang, J. H. D Sim, K. H. Lee, G. H. Koh, D. W. Ha, J. S. Bae, J. G. Lee, and B. J. Park, “A 0.15um DRAM Technology Node for 4 Gb DRAM”, Symp. On VLSI Tech. Dig. For Tech. Paper, 16 [1998]

    10. K. S. Tang, W. S. Lau, and G. S. Samudra, “Trends in DRAM dielectrics”, IEEE Circuit and Devices, 27 [1997]

    11. H. S. Moon, H. S. Choi, H. G. Jang, C. J. Hwang, S. H. Woo, I. K. Han, and H. S. Yang, “Improvement of properties of dynamic random access memories capacitors by PH3 plasma doping process after the formation of hemispherical-grained silicon”, J. Vac. Sci. Techol. B 17. 1017 [1999]

    12. Hirohito Watanabe, Nahomi Aoto, Saburo Adachi, and Takamaro Kikkawa, “Device application and structure observation for hemispherical-grained Si”, J. Appl. Phys. 71, 3538 [1992]

    13. N. Matsuo, H. Ogawa, T. Kouzaki, and S. Okada, “Nucleation and growth mechanism of hemispherical grain polycrystalline silicon”, Appl. Phys. Lett. 60, 2607 [1992]

    14. J. M. Sallese, A. Ils, D. Bouvet, P. Fazan, and Chris Merritt, “Modeling of the depletion of the amorphous-silicon surface during hemispherical grained silicon formation”, J. Appl. PHYS. 88, 5751 [2000]

    15. Hiroshi Iwai and Shun’ Ichiro Ohmi, “CMOS downsizing and high-k gate insulator technology”, IEEE Device, Circuit and System [2002]

    16. G. Lucovsky, “Electronic structure of high-k transition-metal and rare-earth gate dielectrics for aggressively-scaled silicon devices ”, IWGI, 14 [2001]

    17. International Technology Roadmap for Semiconductor 2005

    18. 劉子平,”下電極材料對化學氣相沉基Ta2O5薄膜應用在動態隨機存取記憶體影響之研究”,清華大學博士論文 [2002]

    19. H. Ishiuchi, “Embedded DAM Technologies”, IEDM 33 [1997]

    20. 蔡育奇,”系統LSI的記憶電容堆疊構造的現況與未來”,電子月刊,5(1) 161 [1999]

    21. 王中樞,”內嵌式DRAM製程技術”,電子月刊 5(12),106 [1999]

    22. A. Waxman and K. H. Zaininger, “Al2O3-silicon insulator gate field effect transistor”, Appl. Phys. Lett. 12, 109 [1968]

    23. V. Kottler, M. F. Gillies, and A. E. T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOxspin tunnel barrier formation”, J. Appl. Phys. 89, 3301 [2001]

    24. M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, “Compositional, structureal, electrical characterization of plasma oxidized thin aluminum layer for spin-tunnel junctions”, J. Appl. Phys. 88, 429 [2000]

    25. Han Gao, Cheng Mu, FanWang, Dongsheng Xu, Kai Wu, and Youchang Xie, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template”, J. Appl. Phys. 93, 5602 [2003]

    26. Aurelian C. Ga lca, E Stenfan Kooil, Herbert Wormeester, and Cora Salm, “Structural and optical characterization of porous anodic aluminum oxide”, J. Appl. Phys. 94, 4296 [2003]

    27. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys, 89 5234 [2001]

    28. M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M Poppeler, Appl. Phys. Lett. 78, 2670 [2001]

    29. E. Fredrikssonand J. O. Carlsson, J. Chem. Vapor Dep. 1.333 [1993]

    30. D. Riihela, M. Ritala, R. Matero, and M. Leskela, Thin Solid Films 289, 250 [1996]

    31. 連振炘,”金氧半元件物理課程講義chap. 8” [2004]

    32. Michel Houssa, “High-k Gate Dielectrics”, published by Institute of Physics Publishing [2004]

    33. James Kolodzey, Enam Ahmed Chowdhury, Thomas N. Adam, Guohua Qui, I. Rau, Johnson Olufemi Olowolafe, John S. Suehle, and Yaun Chen, “Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon”, IEEE, Trans. Elec. Dev. 47, 121 [2000]

    34. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “Applied Physics Review: High-k gate dielectrics : Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 [2001]

    35. Dae-Gyu Park, Heung-Jae Cho, Kwan-Yong Lim, Chan Lim, In-Seok Yeo, Jae-SUNG Roh, and Jin Won Park, “Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys. 89, 6275 [2001]

    36. Hang Hu, Chunxiang Zhu, Y. F. Lu, M. F. Li, Byung Jin Cho, W. K. Choi, “A high performance MIM capacitor using HfO2 dielectrics”, IEEE Electron Device Lett., vol. 23, pp. 514-516, Sep. [2002]

    37. Sun Jung Kim, Byung Jin Cho, M. F. Li, XIONGFEI Yu, Chunxiang Zhu, Albert Chin, Dim-Lee Kwong, “PVD HfO2 for high- precision OMIM capacitor applications”, IEEE Electron Device Lett., vol. 24, pp. 387-389, JUNE. [2003]

    38. Q. Fang, J. Y. Zhang, Z. M. Wang, G. He, J. Yu, Ian W. Boyd, “High-k dielectrics by UV photo-assisted chemical vapor deposition”, Microelectronic Engineering 66 621-630 [2003]

    39. J. F. Kang, H. Y. Yu, C. Ren, M. F. Li, D. S. H. Chan, “Ultra-thin HfO2 gate stack with TaN/ HfN electrodes fabricated using a high temperature process”, Electrochemical and solid-state Letter, 8(11) G311-G313 [2005]

    40. 李清楠,”下電極材料對原子層化學氣相沉積Al2O3高介電薄膜應用在奈米尺度世代DRAM影響之研究”,清華大學碩士論文 [2005]

    41. 許家旺,”In-situ電漿表面處理對原子層化學氣相沉積Al2O3、HfO2高介電薄膜應用在奈米尺度世代DRAM影響之研究”,清華大學碩士論文 [2006]

    42. G. S. Higashi, and C. G. Fleming, “Sequential surface chemical reaction limited growth of high quality Al2O3 dielectric”, Appl. Phys. Lett. 55, 1963 [1989]

    43. Ronald Kuse, Manisha Kundu, Tetsuji Yasuda, Noriyuki Miyata, and Akira Toriumi, “Effect of precursor concentration in atomic layer deposition of Al2O3”, J. Appl. Phys. 94, 6411 [2003]

    44. Yunirarto Widjaja, Charles B. Musgrave, “Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition”, Appl. Phys. Lett. 80, 3304 [2002]

    45. Martin M. Frank, Yves J, Chabal, and Glen D. Wilk, “Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides”. Appl. Phys. Lett. 82, 4758 [2003]

    46. J. B. Kim D. R. Kwon, K. Chakrabarti, Chongmu Lee, K. Y. Oh, and J. H. Lee, “Inmprovement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique”, J. Appl. Phys. 9, 6739 [2002]

    47. M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G. Friedbacher, and M. Grasserbauer, “Thin Solid Film” 286, 54 [1996]

    48. R. Matero, A. Rahtu, M. Ritala, M. Leskela, and T. Sajavaara, “Thin Solid Films”368, 1 [2000]

    49. D. R. Strongin, J. F. Moore, and M. W. Ruckman, “Synchrotron radiation assisted deposition of aluminum oxide form condensed layer of trimethylaluminum and water at 78K”, Appl. Phys. Lett. 61. 792 [1992]

    50. Suvi Haukka, Eeva-Liisa, and Toumo untola, “Analysis of hydroxyl group controlled atomic layer deposition of hafnium precursors dioxide from hafnium tetrachloride and water”, J. Appl. Phys. 95, 4777 [2004]

    51. Mathew D. Halls, Krishnan Raghavachari, “Atomic layer deposition growth reactions of Al2O3 on Si(100)-2x1” J. Phys. Chem. B2004, 108, 4058-4062

    52. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivaiton of 3-5 compound semiconductors using atomic layer deposition grown Al2O3”, Appl. Phys. Lett. 87, 252104 [2005]

    53. H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films ”, published by Academic Press, P. 103~P.159

    54. T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. Baumyol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapordeposition of amorphous Al2O3 thin films on Si(100)”, Appl. Phys. LETT. 75, 4001 [1999]

    55. Alicha A. R. Elshabini-Riad Fred D. ”Thin film technology handbook”, The McGraaw-Hill Companies, Inc, ISBNO-07-115998-7

    56. 陳力俊等人主編,”微電子材料與製程”P. 107 [2000]

    57. H. N. AlShareef, K. D. Gifford, S. H. Rou, P. H. Hren, O. Auciello, A. I. KIngon, Integrated Ferroelectronics, P.321 [1993]

    58. Lynnette D. Madsen, Louise Weaver, Henrik, Ljungcrantz, Alison J. Clark, J. of Electronic Mater, 27 P. 418 [1998]

    59. T. Maeder, L. Sagalowicz and P. Muralt, “Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta, and Zr Adhesion Layers” Jpn. J. Appl. Phys. 37, 2007 [1998]

    60. 吳世全,電子期刊第五卷第五期,P.129

    61. Jae-Hyun Joo, Wan-Don Kim, Tong-Kuk Jeong, Seok-Jun Won, Soon-Yeon Park, Cha-Young Yoo, Sun-Tae Kim, and Joo-Tae Moon, “Rugged metal electrode(RME) for high density memory devices”, Jpn. J. Appl. Phys. 40, 826 [2001]

    62. Jae Hyoung Choi, Jeong-Hee Chung, Se-Hoon Oh, Jeong Sik Choi, Cha-young Yoo, Sung-Tae Kim, U-In Chung, and Jeong-Tae Moon, “New approaches to improve the endurance of TiN/HfO2/TiN capacitor during the back-end process for 70 nm DRAM device”, IDEM 03-661, 2003

    63. D. Mao, and J. Hopwood, “Ionized physical vapor deposition of titanium nitride: A deoisition model”, J. A. ppl. Phys. 96, 820 [2004]

    64. C. S. Shin, S. Rudenja, D. Gall, N. Hellgren, T. Y. Lee, I. Petrov, and J. E. Greene, “Growth, surface morphology, and electrical resistivity of strained substoichiometric epitaxial TiNx(0.67<x<1) layer on MgO(100)”, J. Appl. Phys. 95, 356 [2004]

    65. Sang Bom Kang, Yun Sook Chae, Mee Young Yoon, Hyeun Seog Leem, Chang Soo Park, Sang In Lee, and Moon Yong Lee, “Low temperature processing of conformal TiN by ACVD (Advanced chemical vapor deposition) for Multilevel Metallization in high density ULSI devices”, IEEE, IITC 102-104 [1998]

    66. J. Roberson and C. W. Chang, T. B. Wu, “On the suppression of hydrogen degradation in PbZr0.4,Ti0.6O3 ferroelectric capacitors with PtOx top electrode”, J. Appl. Phys. 98, 104105 [2005]

    67. 黃俊凱”DRAM運用之Ta2O5薄膜電容下電極材料的研究”,清華大學碩士論文 [1999]

    68. B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Proocessing and Device Issues of High Permittivity Materials for DRAMs”, O. Aucuello and R. Waser (eds. ), Science and Technology of Electroceramic Thin Films, published by Kluwer Ademic Publisher, [1995]

    69. A. J. Moulson and J. M. Herbet, “Electronceramics-materials, Properties, Applications” published by Capman and Hall [1990]

    70. L. L. Hencb and J. K. West, “Principles of Electronic Ceramic”, published by John Wiley and Sons, Inc. [1990]

    71. M. W. Barsoum, “Fundamentals of Ceramics” published by McGraw-Hill, Inc. [1997]

    72. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics” , published by Johm Wiley Sons. [1991]

    73. 李雅明,”固態電子學”,全華科技圖書 [1995]

    74. 吳朗,”電子陶瓷-介電”,全欣資訊圖書 [1994]

    75. M. Ohring, “The Materials Science of Thin Films” publishedby Academic Press, Inc. [1992]

    76. A. Rose, “Space-Charge-Limited Currents in Solids”, Phys. Rev., 97(6), 1538 [1995]

    77. M. A. Lampert, “Simplified Theory of Space-charge-limited Currents in an Insulator with Traps”, Phys. Rev., 103(6), 1648 [1956]

    78. C. A. Mead, “Electron Transport Mechanisms in Thin Insulating Films”, Phys. Rev., 128(5), 2088 [1962]

    79. J. G. Simmons, “Potential Barriers and Emission-Limited Current Flow Between Closely Spaced Parallel Metal Electrode”, J. Appl. Phys. 35, 2472 [1964]

    80. K. L. Chopra, “Avalanche-Induced Negative Resistance in Thin Oxide Films”, J. Appl. Phys. 36, 184 [1965]

    81. S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films”, J. Appl. Phys. 38, 2951 [1967]

    82. J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems”, Phys. Rev. 155, 657 [1967]

    83. S. M. Hu, D. R. Kerr and L. V. Gregor, “Evidence of Hole Injection and Trapping in Silicon Nitride Films Prepared by Reactive Sputtering”, Appl. Phys. Lett. 10, 97 [1967]

    84. J. R. Yeargan, “The Poole-Frenkel Effect with Compensation President”, J. Appl. Phys 46, 1399 [1975]

    85. 張志祥,”利用低壓化學氣相沉積法製作動態隨機存取記憶體應用之(Ta2O5)1-X-(TiO2)X介電薄膜的研究”,清華大學博士論文[2000]

    86. 施敏著,黃調元譯,”半導體元件物理與製作技術”,國立交通大學出版社 [2002]

    87. J. R. Mcbride, G. W. Graham, C. R. Peters, and W. H. Weber, “Growth and characterization of reactively sputtered thin-film platinum oxides”, J. Appl. Phys. 69, 1596 [1991]

    88. J. Kwo and M. Hong, Mat. Res. Soc. Symp. Proc. 2003, 745, 312

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE