簡易檢索 / 詳目顯示

研究生: 蕭如正
Hsiao, Ju-Cheng
論文名稱: 利用多孔性陽極氧化鋁製備具高垂直異相性鐵鉑點陣列
Fabrication of L10 FePt dot array with high perpendicular anisotropy by porous alumina template
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 賴志煌
歐陽浩
蔡佳霖
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: 鐵鉑合金陽極氧化鋁圖案化記錄媒體
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用陽極氧化鋁(Anodic alumina oxide, AAO)作為模板,將序化鐵鉑合金圖案化(Patterning)並且探討其磁性質在圖案化前後的差異。首先利用磁控濺鍍(Magnetron sputtering)及快速升溫退火爐(Rapid thermal annealing, RTA)以450 oC退火製備出具有垂直異向性(Perpendicular anisotropy)的L10鐵鉑序化合金相。將鋁膜濺鍍在鐵鉑薄膜之上,鐵鉑合金直接當作後續陽極氧化處理時的電極。在陽極氧化過程後鐵鉑合金的磁滯曲線(Hysteresis loop)幾乎沒有改變,表示此製程並不會改變鐵鉑薄膜的磁性質。接著濺鍍鉭薄膜,並用化學液移除氧化鋁,留下鍍進氧化鋁孔洞裡的金屬鉭,做為後續蝕刻時,覆蓋在鐵鉑合金上的硬遮罩。蝕刻製程利用感應耦合電漿蝕刻法(Inductive coupled plasma etching, ICP etching),以一氧化碳-氨氣(CO/NH3)混合氣體將未被金屬鉭覆蓋住的鐵鉑合金蝕刻後,從掃描式電子顯微鏡影像中可以清楚的看到具有與氧化鋁孔洞大小相近的鐵鉑合金奈米點。此鐵鉑合金奈米點之矯頑場在圖案化後有大幅的增加,其磁翻轉行為從磁區壁移動模式(Domain wall motion model)變換成Stoner-Wohlfarth旋轉模式(Rotation model)。此外,我們也利用類似的製程製備Fe/FePt奈米結構,此交互耦合的圖案化奈米結構(Exchange-coupled composite nanostructure)具有比純鐵鉑合金較小的磁矯頑場,適合應用於新穎磁紀錄媒體。


    This work has been focused on the study of patterning L10 FePt and its magnetic properties by using anodic aluminum oxide (AAO) as template. Ordered L10 FePt thin films with perpendicular anisotropy were prepared by sequential planetary sputtering on SiO2 substrate and annealed at 450oC by rapid thermal annealing (RTA) process. Aluminum was then deposited on L10 FePt, and FePt film was used as electrode to anodize aluminum. The hysteresis loops of FePt thin film were nearly unchanged after the anodization process. Ta layer was sputtered on top of the AAO, we then removed the alumina, leaving part of Ta that went into the bottom of the pores and was used as the hard mask for subsequent etching process. After etching process by inductive coupled plasma etcher using CO/NH3 gas mixture, FePt dot array was clearly observed by SEM with dot size similar to the pore size of AAO. Meanwhile, the coercivity was significantly increased compared to FePt thin film and the magnetic reversal behavior shifted from domain wall motion to Stoner-Wohlfarth rotation model. Furthermore, we also create Fe/FePt composite nanostructure by similar fabrication process, the nanostructure was like exchange-coupled patterned media with a fair coercivity, which is suitable for real magnetic recording application.

    摘要 II ABSTRACT III 致謝 IV 目錄 V 圖目錄 VII 第一章 序論 1 第二章 文獻回顧 3 2.1 圖案化記錄媒體 (Bit Patterned Media, BPM) 3 2.1.1 離子束轟擊 (Ion beam irradiation) 4 2.1.2 嵌段共聚物(Block copolymer lithography) 6 2.1.3 電子束微影 (Electron beam lithography) 8 2.1.4 奈米壓印 (Nanoimprint lithography) 9 2.1.5 陽極氧化鋁模板 (Anodic Aluminum Oxide Template) 11 2.2 陽極氧化鋁(Anodic Aluminum Oxide, AAO) 12 2.2.1 陽極氧化鋁之結構與其成長機制 12 2.2.2 氧化鋁結構的控制變因 14 2.2.3 高度規則排列之多孔性氧化鋁 15 2.3 鐵鉑合金(FePt) 18 2.4 交互耦合複合式媒體(Exchange coupled composite media, ECC media) 20 2.4.1 FeSiO on Co-PdSi multilayers 20 2.4.2 Fe on FePt 22 第三章 實驗方法 24 3.1 實驗流程 24 3.2 樣品製備 26 3.2.1 FePt薄膜 26 3.2.2 陽極氧化鋁(Anodic aluminum oxide) 28 3.2.3 擴孔反應(Pore widening process) 29 3.2.4 感應耦合電漿離子蝕刻系統(Inductive coupled plasma reactive ion etching, ICP-RIE) 29 3.3 化學藥品清單 30 3.4 量測與分析 31 3.4.1 樣品振盪磁測儀 (Vibrating sample magnetometer, VSM) 31 3.4.2 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 33 3.4.3 X光繞射儀 (X-ray diffractometer) 34 3.4.4 原子力顯微鏡 (Atomic force microscope, AFM) 35 第四章 結果與討論 37 4.1 多次陽極氧化處理 (Multi-step anodization) 37 4.2 AAO on FePt 39 4.2.1 氧化處理時間(Anodization time) 39 4.2.2 氧化處理電壓(Anodization voltage) 43 4.2.3 化學蝕刻(Chemical etching) 45 4.3 FePt點陣列製備(Fabrication of FePt dots) 49 4.3.1 蝕刻時間相依性(Etching time dependence) 49 4.3.2 具高垂直異向性的FePt點陣列(FePt dots with high perpendicular anisotropy) 52 4.4 Fe/FePt交互耦合複合式結構(Fe/FePt exchange coupled composite structure) 56 4.4.1 Fe/FePt thin film 56 4.4.2 Fe/FePt network 58 4.4.3 Fe/FePt dots 61 第五章 結論 63 第六章 參考文獻 64

    1. H. J. Richter, Journal of Physics D-Applied Physics 40 (9), R149-R177 (2007).
    2. D. Weller and A. Moser, Ieee Transactions on Magnetics 35 (6), 4423-4439 (1999).
    3. Y. C. Wu, L. W. Wang and C. H. Lai, Applied Physics Letters 91 (2007).
    4. C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet and H. Launois, Science 280 (5371), 1919-1922 (1998).
    5. B. D. Terris, D. Weller, L. Folks, J. E. E. Baglin, A. J. Kellock, H. Rothuizen and P. Vettiger, Journal of Applied Physics 87 (9), 7004-7006 (2000).
    6. S. W. Shin, S. G. Lee, J. Lee, C. N. Whang, J. H. Lee, I. H. Choi, T. G. Kim and J. H. Song, Nanotechnology 16 (8), 1392-1395 (2005).
    7. B. D. Terris, L. Folks, D. Weller, J. E. E. Baglin, A. J. Kellock, H. Rothuizen and P. Vettiger, Applied Physics Letters 75 (3), 403-405 (1999).
    8. S. I. Woods, S. Ingvarsson, J. R. Kirtley, H. F. Hamann and R. H. Koch, Applied Physics Letters 81 (7), 1267-1269 (2002).
    9. D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 279 (5350), 548-552 (1998).
    10. F. S. Bates and G. H. Fredrickson, Annual Review of Physical Chemistry 41, 525-557 (1990).
    11. C. A. Ross and J. Y. Cheng, Mrs Bulletin 33 (9), 838-845 (2008).
    12. Y. N. Xia, J. A. Rogers, K. E. Paul and G. M. Whitesides, Chemical Reviews 99 (7), 1823-1848 (1999).
    13. R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland and D. M. Tricker, Physical Review Letters 83 (5), 1042-1045 (1999).
    14. J. I. Martin, J. Nogues, K. Liu, J. L. Vicent and I. K. Schuller, Journal of Magnetism and Magnetic Materials 256 (1-3), 449-501 (2003).
    15. G. Hu, T. Thomson, M. Albrecht, M. E. Best, B. D. Terris, C. T. Rettner, S. Raoux, G. M. McClelland and M. W. Hart, Journal of Applied Physics 95 (11), 7013-7015 (2004).
    16. S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo and L. Zhuang, Journal of Vacuum Science & Technology B 15 (6), 2897-2904 (1997).
    17. M. T. Li, L. Chen and S. Y. Chou, Applied Physics Letters 78 (21), 3322-3324 (2001).
    18. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Applied Physics Letters 67 (21), 3114-3116 (1995).
    19. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Science 272 (5258), 85-87 (1996).
    20. H. Cao, Z. N. Yu, J. Wang, J. O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu and S. Y. Chou, Applied Physics Letters 81 (1), 174-176 (2002).
    21. X. G. Liang, K. J. Morton, R. H. Austin and S. Y. Chou, Nano Letters 7 (12), 3774-3780 (2007).
    22. G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter and B. D. Terris, Applied Physics Letters 81 (8), 1483-1485 (2002).
    23. H. Masuda and M. Satoh, Japanese Journal of Applied Physics Part 2-Letters 35 (1B), L126-L129 (1996).
    24. H. Masuda, K. Yasui and K. Nishio, Advanced Materials 12 (14), 1031-1033 (2000).
    25. S. Zhao, H. Roberge, A. Yelon and T. Veres, Journal of the American Chemical Society 128 (38), 12352-12353 (2006).
    26. N. Yasui, A. Imada and T. Den, Applied Physics Letters 83 (16), 3347-3349 (2003).
    27. F. Keller, M. S. Hunter and D. L. Robinson, Journal of the Electrochemical Society 100 (9), 411-419 (1953).
    28. F. Matsumoto, K. Nishio and H. Masuda, Advanced Materials 16 (23-24), 2105-+ (2004).
    29. R. J. Tonucci, B. L. Justus, A. J. Campillo and C. E. Ford, Science 258 (5083), 783-785 (1992).
    30. T. M. Whitney, J. S. Jiang, P. C. Searson and C. L. Chien, Science 261 (5126), 1316-1319 (1993).
    31. K. Nielsch, F. Muller, A. P. Li and U. Gosele, Advanced Materials 12 (8), 582-586 (2000).
    32. S. Z. Chu, S. Inoue, K. Wada, D. Li and H. Haneda, Journal of Materials Chemistry 13 (4), 866-870 (2003).
    33. Y. Lei, W. P. Cai and G. Wilde, Progress in Materials Science 52 (4), 465-539 (2007).
    34. S. Bandyopadhyay, A. E. Miller, H. C. Chang, G. Banerjee, V. Yuzhakov, D. F. Yue, R. E. Ricker, S. Jones, J. A. Eastman, E. Baugher and M. Chandrasekhar, Nanotechnology 7 (4), 360-371 (1996).
    35. H. Masuda and K. Fukuda, Science 268 (5216), 1466-1468 (1995).
    36. H. Chik and J. M. Xu, Materials Science & Engineering R-Reports 43 (4), 103-138 (2004).
    37. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura, Applied Physics Letters 71 (19), 2770-2772 (1997).
    38. R. H. Victora and X. Shen, Ieee Transactions on Magnetics 41 (2), 537-542 (2005).
    39. J. P. Wang, W. K. Shen and J. M. Bai, Ieee Transactions on Magnetics 41 (10), 3181-3186 (2005).
    40. H. C. Hou, M. S. Lin, J. W. Liao, T. L. Wu, C. H. Lai, R. Z. Chen, J. L. Lee, H. J. Lin, F. H. Chang and J. S. Yang, Journal of Applied Physics 105 (7) (2009).
    41. T. Hauet, E. Dobisz, S. Florez, J. Park, B. Lengsfield, B. D. Terris and O. Hellwig, Applied Physics Letters 95 (26) (2009).
    42. D. Makarov, J. Lee, C. Brombacher, C. Schubert, M. Fuger, D. Suess, J. Fidler and M. Albrecht, Applied Physics Letters 96 (6) (2010).
    43. J. P. Wang, W. K. Shen, J. M. Bai, R. H. Victora, J. H. Judy and W. L. Song, Applied Physics Letters 86 (14) (2005).
    44. K. Z. Gao and H. N. Bertram, Ieee Transactions on Magnetics 38 (5), 3521-3527 (2002).
    45. J. P. Wang, Y. Y. Zou, C. H. Hee, T. C. Chong and Y. F. Zheng, Ieee Transactions on Magnetics 39 (4), 1930-1935 (2003).
    46. R. H. Victora and X. Shen, Proceedings of the Ieee 96 (11), 1799-1809 (2008).
    47. D. Goll and A. Breitling, Applied Physics Letters 94 (5) (2009).
    48. Y. C. Wu, L. W. Wang, C. H. Lai and C. R. Chang, Journal of Applied Physics 103 (7) (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE