研究生: |
丁冠中 Ding, Guan-zhong |
---|---|
論文名稱: |
智慧型手機使用者消費行為預測框架 A Consuming Behavior Prediction Framework for Smartphone Users |
指導教授: |
金仲達
King, Chung-Ta |
口試委員: |
徐正炘
Hsu, Cheng-Hsin 陳彥仰 Chen, Mike |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 32 |
中文關鍵詞: | 智慧型手機 |
外文關鍵詞: | consuming behavior |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用者消費行為對於研究者來說一直都是充滿趣味及挑戰性的研究領域,而這也是大
多數網站獲利的主要來源。智慧型手機擁有感知人類周遭環境的能力,隨著智慧型手機在
人類的生活中越來越不可或缺,這樣的能力也讓我們有機會了解使用者的環境以及意圖。
在這篇論文當中,我們將會提出一個智慧型手機消費者行為預測框架,藉由手機所能敢知
道的資訊,獲取人的環境資料,並分析這些資料得到使用者實際的購物意圖。藉由其中三
個關鍵項目,分別是使用者消費行為的收集、消費者行為意圖分析以及消費者行為預測模
型而得到準確的預測。為了證明此框架的可行性,我們在Android 手機上開發了Context
收集程式,並邀請14 個受測者,並讓每位受測者進行3 個禮拜的連續測試。在這三個禮
拜中,使用者分別拿著悠遊卡進行所有消費並記錄,我們也透過使用者的智慧型手機感知
使用者的周遭環境及意圖。最後將這些資料進行分析並丟進消費者行為預測框架進行預測,
整個系統可以達到百分之六十七的準確度。
Consuming activities is one of the most interesting behaviors for researchers, which is
major profitable source to online web service. As smartphone have become prevalent and
have the ability to sense user context, mobile offers a great opportunity to understand
user consuming intention. In this thesis, we present a next consuming behavior prediction
framework for smartphone users. We predict user next possible purchase item by collecting
useful context from smartphone and extract semantic context for further study. As one of
the key enabling techniques, a probabilistic prediction model has proposed to better describe
user consuming behavior. To demonstrate the feasibility of proposed framework, we evaluate
the overall framework by constructing a context collection daemon in Android and asking
14 participants conduct a 3 weeks experiment by using Easycard in every transaction during
daily life. The result indicates that timing and location are the most important context
for next consuming activity prediction and our framework reach 76% accuracy in overall
evaluation.
1
[1] J. OBrien A. Johnson and G. Alvarez, “Context shapes demand at moments of truth”,
Tech. Rep., research report G00200528, Gartner, 25 May 2010.
[2] Martin Michalik, “Booming growth of smartphones and apps”, 2012.
[3] Nielsen, “Smartphones account for half of all mobile phones, dominate new phone
purchases in the us”, 2012.
[4] Google Wallet, “http://www.google.com/wallet/”.
[5] VISA PayWave, “http://www.visa-asia.com/ap/au/cardholders/paywave/index.html”.
[6] Square Company, “https://squareup.com/”.
[7] D.E. Rose and D. Levinson, “Understanding user goals in web search”, 2004, pp. 13–19,
ACM.
[8] E.J. Johnson, W.W. Moe, P.S. Fader, S. Bellman, and G.L. Lohse, “On the depth and
dynamics of online search behavior”, Management Science, pp. 299–308, 2004.
[9] U. Lee, Z. Liu, and J. Cho, “Automatic identification of user goals in web search”,
2005, pp. 391–400, ACM.
[10] C.H. Park and Y.G. Kim, “Identifying key factors affecting consumer purchase behavior
in an online shopping context”, International Journal of Retail & Distribution
Management, vol. 31, no. 1, pp. 16–29, 2003.
30
[11] M.K. Chang, W. Cheung, and V.S. Lai, “Literature derived reference models for the
adoption of online shopping”, Information & Management, vol. 42, no. 4, pp. 543–559,
2005.
[12] V. Mummalaneni, “An empirical investigation of web site characteristics, consumer
emotional states and on-line shopping behaviors”, Journal of Business Research, vol.
58, no. 4, pp. 526–532, 2005.
[13] B.J. Jansen, A. Spink, J. Bateman, and T. Saracevic, “Real life information retrieval:
a study of user queries on the web”, 1998, vol. 32, pp. 5–17, ACM.
[14] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz, “Analysis of a very large web
search engine query log”, 1999, vol. 33, pp. 6–12, ACM.
[15] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy, “Clustering query refinements by
user intent”, 2010, pp. 841–850, ACM.
[16] E. Agichtein, E. Brill, and S. Dumais, “Improving web search ranking by incorporating
user behavior information”, 2006, pp. 19–26, ACM.
[17] M. Kamvar and S. Baluja, “A large scale study of wireless search behavior: Google
mobile search”, 2006, pp. 701–709, ACM.
[18] L. Aalto, N. Gthlin, J. Korhonen, and T. Ojala, “Bluetooth and wap push based
location-aware mobile advertising system”, 2004, pp. 49–58, ACM.
[19] C. Narayanaswami, D. Coffman, MC Lee, YS Moon, JH Han, HK Jang, S. McFaddin,
YS Paik, JH Kim, and JK Lee, “Pervasive symbiotic advertising”, 2008, pp. 80–85,
ACM.
[20] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-item
collaborative filtering”, Internet Computing, IEEE, vol. 7, no. 1, pp. 76–80, 2003.
[21] JP Mangalindan, “Amazon’s recommendation secret”, 2012.
31
[22] B. Kim, J.Y. Ha, S. Lee, S. Kang, Y. Lee, Y. Rhee, L. Nachman, and J. Song, “Adnext:
A visit-pattern-aware mobile advertising system for urban commercial complexes”, in
HotMobiles, 2011.
[23] J. Paek, K.H. Kim, J.P. Singh, and R. Govindan, “Energy-efficient positioning for
smartphones using cell-id sequence matching”, 2011, pp. 293–306, ACM.
[24] Google Place, “http://www.google.com/places/”.
[25] Foursquare, “https://foursquare.com/”.
[26] Bing Maps, “http://www.bing.com/maps/”.
[27] Nielsen, “Nielsen online report. state of social media”, 2011.
[28] Taiwan E-Invoice Platform, “https://www.einvoice.nat.gov.tw”.
[29] Weather Underground, “http://www.wunderground.com”.
[30] Bayes Net Toolbox for Matlab, “https://code.google.com/p/bnt/”.