簡易檢索 / 詳目顯示

研究生: 陳勇任
Chen, Yung-Jen
論文名稱: 藉由帶有分支過程的偏微分方程對物種突變進行數值模擬
Numerical Simulation for Species Mutation by Partial Differential Equations with Branching Process
指導教授: 朱家杰
Chu, Chia-­Chieh
口試委員: 蔡志強
Tsai, Je-Chiang
林得勝
Lin, Te-Sheng
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 42
中文關鍵詞: 擴散突變分支過程
外文關鍵詞: Diffusion, Mutation, Branching Process
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從過往到現在,細菌是處處存在在我們的世界當中。然而世界一直
    在改變,想當然的細菌也是會隨著空間環境的不同而適應當下的環境,
    並且透過遷移的方式去找尋適合自己的生長環境,如果無法遷移則會
    透過突變的方式來達到能夠適應當前生長環境。
    首先我們會驗證運用離散突變項的技巧來替代規律繁殖的方法是否
    可實施在一個物種的常微分方程模型上,並且我們去比較彼此之間的
    差異。再者,我們運用相同方法套用在兩個物種的常微分方程模型下,
    並且我們去比較彼此之間的差異。最後我們藉由這種方法來建構偏微
    分方程模型,並且透過這個模型來模擬出細菌在微生物進化和生長場
    (MEGA) 上的行為。另外我們透過不同的成長率以及不同的擴散率下
    去比較其差異。


    From the past to the present, bacteria are everywhere in our world. However, the world is always changing. Naturally, bacteria will adapt to the current environment according to different spatial environments, and find a suitable growth environment through migration. If they cannot migrate, they will
    adapt to the current environment through mutations.
    First, we will verify whether the technique of using discrete mutation
    terms instead of regular reproduction can be implemented on the ordinary
    differential equation model of a species, and we will compare the differences
    between them. Furthermore, we apply the same method to the ordinary differential equation model of the two species, and we compare the differences
    between them. Finally, we use this method to construct a partial differential
    equation model, and use this model to simulate the behavior of bacteria in the
    microbial evolution and growth arena(MEGA). In addition, we compare the
    differences through different growth rates and different diffusion rates.

    Contents 誌謝 摘要 i Abstract ii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Literature Discussion and The Structure of Our Thesis . . . . . . . . . . 1 2 Numerical Experiments of The Model of Ordinary Differential Equation 5 2.1 Validation of Discrete Mutation Term Method on ODE . . . . . . . . . . 8 2.2 The Structure of ODE Model and Numerical Simulation . . . . . . . . . 13 3 Numerical Experiments of The Model of Partial Differential Equation 27 3.1 The Structure of The Model Equation of Three Bacteria . . . . . . . . . . 28 3.2 Analysis of Numerical Simulation with Different Diffusion Rate . . . . . 29 3.3 Analysis of Numerical Simulation with Different Growth Rate . . . . . . 33 3.4 Analysis of Numerical Simulation with Fixed Diffusion Rate and Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Conclusion 39 References 41

    [1] Kawecki T. J. Lenski R. E. Ebert D. Hollis B. Olivieri I. Whitlock M. C. Experimental
    evolution. Trends in ecology evolution, 27:547–560, 2012.
    [2] Dragosits M. Mattanovich D. Adaptive laboratory evolution–principles and applications for biotechnology. Microbial cell factories, 12:1–17, 2013.
    [3] Conrad T. M. Lewis N. E. Palsson B. Ø. Microbial laboratory evolution in the era of
    genome­scale science. Molecular systems biology, 7:509, 2011.
    [4] Portnoy V. A. Bezdan D. Zengler K. Adaptive laboratory evolution —harnessing
    the power of biology for metabolic engineering. Current opinion in biotechnology,
    22:590–594, 2011.
    [5] Alekshun M. N. Levy S. B. Molecular mechanisms of antibacterial multidrug resistance. Current opinion in biotechnology, 128:1037–1050, 2007.
    [6] Hermsen R. Deris J. B. Hwa T. On the rapidity of antibiotic resistance evolution
    facilitated by a concentration gradient. Proceedings of the National Academy of
    Sciences, 109:10775–10780, 2012.
    [7] Michael Baym Tami D.Lieberman Eric D. Kelsic Remy Chait Rotem Gross Idan
    Yelin Roy Kishony. Spatiotemporal microbial evolution on antibiotic landscapes.
    Science, 353:1147–1151, 2016.
    [8] Hegreness M. Shoresh N. Damian D. Hartl D. Kishony R. Accelerated evolution
    of resistance in multidrug environments. Proceedings of the National Academy of
    Sciences, 105:13977–13981, 2008.
    [9] G. Liao D. Kim H. Robin K. Tung C. K. Austin R. H. Zhang Q. Lambert. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments.
    Science, 333:1764–1767, 2011.
    [10] Dekel E. Alon U. Optimality and evolutionary tuning of the expression level of a
    protein. Nature, 436:588–592, 2005.
    [11] Hartl D. L. Clark A. G. Clark A. G. The simple chemostat with wall growth. Sunderland, MA: Sinauer associates., 116, 1997.
    [12] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
    Journal of Physical Chemistry, 81:2340–2361, 1977.
    [13] Daniel T Gillespie. A general method for numerically simulating the stochastic time
    evolution of coupled chemical reactions. Journal of computational physics, 22:403–
    434, 1976.
    [14] Pilyugin S. S. Waltman P. The simple chemostat with wall growth. SIAM Journal
    on Applied Mathematics, 59:1552–1572, 2011.
    [15] Hsu S. B. Yang Y. T. Theory of a microfluidic serial dilution bioreactor for growth
    of planktonic and biofilm populations. Journal of mathematical biology, 72:1401–
    1427, 2016.
    [16] Giles M. B. Multilevel monte carlo path simulation. Operations research, 56:607–
    617, 2008.

    QR CODE